論文の概要: RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection
- arxiv url: http://arxiv.org/abs/2405.20112v1
- Date: Thu, 30 May 2024 14:49:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 13:58:47.044032
- Title: RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection
- Title(参考訳): RIGID:ロバストAI生成画像検出のためのトレーニング不要でモデルに依存しないフレームワーク
- Authors: Zhiyuan He, Pin-Yu Chen, Tsung-Yi Ho,
- Abstract要約: RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
- 参考スコア(独自算出の注目度): 60.960988614701414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advances in generative AI models have empowered the creation of highly realistic images with arbitrary content, raising concerns about potential misuse and harm, such as Deepfakes. Current research focuses on training detectors using large datasets of generated images. However, these training-based solutions are often computationally expensive and show limited generalization to unseen generated images. In this paper, we propose a training-free method to distinguish between real and AI-generated images. We first observe that real images are more robust to tiny noise perturbations than AI-generated images in the representation space of vision foundation models. Based on this observation, we propose RIGID, a training-free and model-agnostic method for robust AI-generated image detection. RIGID is a simple yet effective approach that identifies whether an image is AI-generated by comparing the representation similarity between the original and the noise-perturbed counterpart. Our evaluation on a diverse set of AI-generated images and benchmarks shows that RIGID significantly outperforms existing trainingbased and training-free detectors. In particular, the average performance of RIGID exceeds the current best training-free method by more than 25%. Importantly, RIGID exhibits strong generalization across different image generation methods and robustness to image corruptions.
- Abstract(参考訳): 生成型AIモデルの急速な進歩は、任意のコンテンツを持つ非常にリアルなイメージの作成を促進し、Deepfakesのような潜在的な誤用や害に対する懸念を高めている。
現在の研究は、生成された画像の大きなデータセットを使用して検出器を訓練することに焦点を当てている。
しかし、これらのトレーニングベースのソリューションは、しばしば計算コストが高く、生成しない画像に対して限定的な一般化を示す。
本稿では,実画像とAI画像とを区別する学習自由度手法を提案する。
まず、視覚基礎モデルの表現空間におけるAI生成画像よりも、実画像が小さなノイズ摂動に対して頑健であることが観察された。
そこで本研究では,堅牢なAI生成画像検出のためのトレーニング不要かつモデルに依存しないRIGIDを提案する。
RIGIDは、画像がAI生成されているかどうかを、オリジナルとノイズの混同した表現の類似性を比較することで識別する、シンプルで効果的なアプローチである。
多様なAI生成画像とベンチマークに対する評価は、RIGIDが既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っていることを示している。
特に、RIGIDの平均性能は、現在の最高のトレーニングフリーメソッドを25%以上上回っている。
重要な点として、RIGIDは画像生成方法にまたがる強力な一般化と、画像の破損に対する堅牢性を示す。
関連論文リスト
- Few-Shot Learner Generalizes Across AI-Generated Image Detection [14.069833211684715]
フーショット検出器(Few-Shot Detector, FSD)は、未知の偽画像を効果的に識別するために、特殊な距離空間を学習するAI生成画像検出器である。
実験の結果、FSDのパフォーマンスは、GenImageデータセット上で平均ACC$+7.4%向上した。
論文 参考訳(メタデータ) (2025-01-15T12:33:11Z) - Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies [58.11545090128854]
本稿では、写真顔画像から純粋にカメラ固有の特徴と顔特有の特徴の自己教師付き学習を活用することで、AI生成顔の異常検出手法について述べる。
提案手法の成功は,特徴抽出器を訓練して4つの通常交換可能な画像ファイルフォーマット(EXIF)をランク付けし,人工的に操作された顔画像の分類を行うプリテキストタスクを設計することにある。
論文 参考訳(メタデータ) (2025-01-04T06:23:24Z) - Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
本稿では,誤用と関連するリスクを軽減するために,予測不確実性を利用してAI生成画像を検出する新しい手法を提案する。
この動機は、自然画像とAI生成画像の分布差に関する基本的な仮定から生じる。
本稿では,AI生成画像の検出スコアとして,大規模事前学習モデルを用いて不確実性を計算することを提案する。
論文 参考訳(メタデータ) (2024-12-08T11:32:25Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
我々はAI生成画像を検出するAI生成画像検出装置(AI生成画像検出装置)を提案する。
AIDEは最先端の手法を+3.5%、+4.6%改善した。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。