Consistency of Extreme Learning Machines and Regression under
Non-Stationarity and Dependence for ML-Enhanced Moving Objects
- URL: http://arxiv.org/abs/2005.11115v4
- Date: Wed, 1 Sep 2021 10:46:26 GMT
- Title: Consistency of Extreme Learning Machines and Regression under
Non-Stationarity and Dependence for ML-Enhanced Moving Objects
- Authors: Ansgar Steland
- Abstract summary: Supervised learning by extreme learning machines with random weights is studied under a non-stationary-temporal sampling design.
Results show consistency and normality of the least squares and ridge regression estimates as well as corresponding consistency results for the $ell_s$-penalty.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised learning by extreme learning machines resp. neural networks with
random weights is studied under a non-stationary spatial-temporal sampling
design which especially addresses settings where an autonomous object moving in
a non-stationary spatial environment collects and analyzes data. The stochastic
model especially allows for spatial heterogeneity and weak dependence. As
efficient and computationally cheap learning methods (unconstrained) least
squares, ridge regression and $\ell_s$-penalized least squares (including the
LASSO) are studied. Consistency and asymptotic normality of the least squares
and ridge regression estimates as well as corresponding consistency results for
the $\ell_s$-penalty are shown under weak conditions. The results also cover
bounds for the sample squared predicition error.
Related papers
- Modeling Spatial Extremes using Non-Gaussian Spatial Autoregressive Models via Convolutional Neural Networks [14.37149160708975]
We present a spatial autoregressive modeling framework, which maps observations at a location and its neighbors to independent random variables.<n>In particular, we consider the SAR model with Generalized Extreme Value distribution innovations to combine the observation at a central grid location with its neighbors.<n>We apply this model to analyze annual maximum precipitation data from ERA-Interim-driven Weather Research and Forecasting (WRF) simulations.
arXiv Detail & Related papers (2025-05-05T21:26:02Z) - SMOGAN: Synthetic Minority Oversampling with GAN Refinement for Imbalanced Regression [0.0]
Imbalanced regression refers to prediction tasks where the target variable is skewed.
This skewness hinders machine learning models, especially neural networks, which concentrate on dense regions.
We propose SMOGAN, a two-step oversampling framework for imbalanced regression.
arXiv Detail & Related papers (2025-04-29T20:15:25Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
We present a unifying perspective on recent results on ridge regression.<n>We use the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning.<n>Our results extend and provide a unifying perspective on earlier models of scaling laws.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Typical and atypical solutions in non-convex neural networks with
discrete and continuous weights [2.7127628066830414]
We study the binary and continuous negative-margin perceptrons as simple non-constrained network models learning random rules and associations.
Both models exhibit subdominant minimizers which are extremely flat and wide.
For both models, the generalization performance as a learning device is shown to be greatly improved by the existence of wide flat minimizers.
arXiv Detail & Related papers (2023-04-26T23:34:40Z) - Structured Optimal Variational Inference for Dynamic Latent Space Models [16.531262817315696]
We consider a latent space model for dynamic networks, where our objective is to estimate the pairwise inner products plus the intercept of the latent positions.
To balance posterior inference and computational scalability, we consider a structured mean-field variational inference framework.
arXiv Detail & Related papers (2022-09-29T22:10:42Z) - Instability and Local Minima in GAN Training with Kernel Discriminators [20.362912591032636]
Generative Adversarial Networks (GANs) are a widely-used tool for generative modeling of complex data.
Despite their empirical success, the training of GANs is not fully understood due to the min-max optimization of the generator and discriminator.
This paper analyzes these joint dynamics when the true samples, as well as the generated samples, are discrete, finite sets, and the discriminator is kernel-based.
arXiv Detail & Related papers (2022-08-21T18:03:06Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
We consider uncertainty-driven perturbations of the training data points.
Unlike loss-driven perturbations, uncertainty-guided perturbations do not cross the decision boundary.
We show that UDP is guaranteed to achieve the robustness margin decision on linear models.
arXiv Detail & Related papers (2022-02-11T16:22:08Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Spatially and Robustly Hybrid Mixture Regression Model for Inference of
Spatial Dependence [15.988679065054498]
We propose a Spatial Robust Mixture Regression model to investigate the relationship between a response variable and a set of explanatory variables over the spatial domain.
Our method integrates the robust finite mixture Gaussian regression model with spatial constraints, to simultaneously handle the spatial nonstationarity, local homogeneity, and outliers.
Experimental results on many synthetic and real-world datasets demonstrate the robustness, accuracy, and effectiveness of our proposed method.
arXiv Detail & Related papers (2021-09-01T16:29:46Z) - Sparse Generalized Yule-Walker Estimation for Large Spatio-temporal
Autoregressions with an Application to NO2 Satellite Data [0.0]
We consider sparse estimation of a class of high-dimensional models.
We estimate the relationships governing both the spatial and temporal dependence in a fully-driven way by penalizing a set of Yule-Walker equations.
A satellite simulation exercise shows strong finite sample performance compared to competing procedures.
arXiv Detail & Related papers (2021-08-05T21:51:45Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.