論文の概要: RUSSE'2020: Findings of the First Taxonomy Enrichment Task for the
Russian language
- arxiv url: http://arxiv.org/abs/2005.11176v1
- Date: Fri, 22 May 2020 13:30:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 08:23:25.588186
- Title: RUSSE'2020: Findings of the First Taxonomy Enrichment Task for the
Russian language
- Title(参考訳): RUSSE'2020 : ロシア語における最初の分類資源化課題の発見
- Authors: Irina Nikishina and Varvara Logacheva and Alexander Panchenko and
Natalia Loukachevitch
- Abstract要約: 本稿では,ロシア語の分類学的豊か化に関する最初の共有課題の結果について述べる。
16チームがこのタスクに参加し、半数以上が提供されたベースラインを上回った。
- 参考スコア(独自算出の注目度): 70.27072729280528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes the results of the first shared task on taxonomy
enrichment for the Russian language. The participants were asked to extend an
existing taxonomy with previously unseen words: for each new word their systems
should provide a ranked list of possible (candidate) hypernyms. In comparison
to the previous tasks for other languages, our competition has a more realistic
task setting: new words were provided without definitions. Instead, we provided
a textual corpus where these new terms occurred. For this evaluation campaign,
we developed a new evaluation dataset based on unpublished RuWordNet data. The
shared task features two tracks: "nouns" and "verbs". 16 teams participated in
the task demonstrating high results with more than half of them outperforming
the provided baseline.
- Abstract(参考訳): 本稿では,ロシア語の分類学的豊か化に関する最初の共有課題の結果について述べる。
参加者は、以前は目に見えない言葉で既存の分類を拡張するよう求められた。新しい単語ごとに、システムは可能(候補)ハイパーネムのランクリストを提供するべきである。
他の言語のタスクと比較すると、コンペティションはよりリアルなタスク設定で、新しい単語は定義なしで提供されました。
代わりに、これらの新しい用語が生じたテキストコーパスを提供しました。
この評価キャンペーンのために,未公開のruwordnetデータに基づく評価データセットを開発した。
共有タスクには「名詞」と「動詞」の2つのトラックがある。
16チームがタスクに参加し、その半数以上が提供されたベースラインを上回って高い結果を示した。
関連論文リスト
- Presence or Absence: Are Unknown Word Usages in Dictionaries? [6.185216877366987]
我々は,フィンランド語,ロシア語,ドイツ語の共用課題であるAXOLOTL-24の評価を行った。
未知の単語使用量と辞書エントリ間のマッピングを予測するために,グラフベースのクラスタリング手法を用いる。
私たちのシステムはフィンランド語とドイツ語で第1位、ロシア語で第2位、Subtask 2テストフェーズのリーダーボードで第2位にランクインします。
論文 参考訳(メタデータ) (2024-06-02T07:57:45Z) - Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation [0.21485350418225246]
本稿では,最新の事前学習言語モデルと近接する近傍探索アルゴリズムを用いて,情報検索に基づく逆辞書システムを提案する。
提案手法はエストニアの既存の語彙資源であるソナベブ(単語ウェブ)に適用され,セマンティック検索を利用した言語間逆辞書機能を導入して拡張・強化することを目的としている。
論文 参考訳(メタデータ) (2024-04-30T10:21:14Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
このような相互作用を探索するためのケーススタディとして,作用性のセマンティックな概念を提示する。
これは、LMが言語アノテーション、理論テスト、発見のためのより有用なツールとして役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T16:24:01Z) - CompoundPiece: Evaluating and Improving Decompounding Performance of
Language Models [77.45934004406283]
複合語を構成語に分割する作業である「分解」を体系的に研究する。
We introduced a dataset of 255k compound and non-compound words across 56 various languages obtained from Wiktionary。
分割のための専用モデルを訓練するための新しい手法を導入する。
論文 参考訳(メタデータ) (2023-05-23T16:32:27Z) - SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding
Tasks [88.4408774253634]
音声言語理解(SLU)タスクは、音声研究コミュニティで何十年にもわたって研究されてきた。
SLUタスクベンチマークはそれほど多くはなく、既存のベンチマークの多くは、すべての研究者が自由に利用できないデータを使っている。
最近の研究は、いくつかのタスクにそのようなベンチマークを導入し始めている。
論文 参考訳(メタデータ) (2022-12-20T18:39:59Z) - IRB-NLP at SemEval-2022 Task 1: Exploring the Relationship Between Words
and Their Semantic Representations [0.0]
本研究は,CODWOEデータセットを用いた記述的,探索的,予測的データ分析に基づいて行った。
本稿では,定義モデリングとリバース辞書タスクのために設計したシステムの概要について述べる。
論文 参考訳(メタデータ) (2022-05-13T18:15:20Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z) - BRUMS at SemEval-2020 Task 3: Contextualised Embeddings for Predicting
the (Graded) Effect of Context in Word Similarity [9.710464466895521]
本稿では,SemEval-2020 Task 3: Graded Word similarity in Contextを提案する。
このシステムは、スタックド埋め込みや平均埋め込みなど、タスク固有の適応を持つ、最先端の文脈化された単語埋め込みを利用する。
最終ランキングに従えば、我々のアプローチはフィンランドのサブタスク2の1位を維持しながら、各言語の上位5のソリューションにランクインする。
論文 参考訳(メタデータ) (2020-10-13T10:25:18Z) - NEMO: Frequentist Inference Approach to Constrained Linguistic Typology
Feature Prediction in SIGTYP 2020 Shared Task [83.43738174234053]
タイプ的特徴間の相関関係を表現するために頻繁な推論を用い、この表現を用いて、個々の特徴を予測する単純なマルチクラス推定器を訓練する。
テスト言語149言語に対して,マイクロ平均精度0.66を達成できた。
論文 参考訳(メタデータ) (2020-10-12T19:25:43Z) - CIRCE at SemEval-2020 Task 1: Ensembling Context-Free and
Context-Dependent Word Representations [0.0]
文脈に依存しない単語表現に基づいて予測を行うアンサンブルモデルを提案する。
その結果,(1)文脈に依存しない単語表現は強力で堅牢なベースラインであり,(2)文脈に依存した単語表現を得るために文分類の目的を利用でき,(3)これらの表現を組み合わせることで,一部のデータセットのパフォーマンスが向上し,他のデータセットのパフォーマンスが低下することがわかった。
論文 参考訳(メタデータ) (2020-04-30T13:18:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。