論文の概要: Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation
- arxiv url: http://arxiv.org/abs/2404.19430v1
- Date: Tue, 30 Apr 2024 10:21:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:34:58.878359
- Title: Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation
- Title(参考訳): 逆辞書作成のための定義埋め込みと意味探索
- Authors: Aleksei Dorkin, Kairit Sirts,
- Abstract要約: 本稿では,最新の事前学習言語モデルと近接する近傍探索アルゴリズムを用いて,情報検索に基づく逆辞書システムを提案する。
提案手法はエストニアの既存の語彙資源であるソナベブ(単語ウェブ)に適用され,セマンティック検索を利用した言語間逆辞書機能を導入して拡張・強化することを目的としている。
- 参考スコア(独自算出の注目度): 0.21485350418225246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an information retrieval based reverse dictionary system using modern pre-trained language models and approximate nearest neighbors search algorithms. The proposed approach is applied to an existing Estonian language lexicon resource, S\~onaveeb (word web), with the purpose of enhancing and enriching it by introducing cross-lingual reverse dictionary functionality powered by semantic search. The performance of the system is evaluated using both an existing labeled English dataset of words and definitions that is extended to contain also Estonian and Russian translations, and a novel unlabeled evaluation approach that extracts the evaluation data from the lexicon resource itself using synonymy relations. Evaluation results indicate that the information retrieval based semantic search approach without any model training is feasible, producing median rank of 1 in the monolingual setting and median rank of 2 in the cross-lingual setting using the unlabeled evaluation approach, with models trained for cross-lingual retrieval and including Estonian in their training data showing superior performance in our particular task.
- Abstract(参考訳): 本稿では,最新の事前学習言語モデルと近接する近傍探索アルゴリズムを用いて,情報検索に基づく逆辞書システムを提案する。
提案手法は既存のエストニア語辞書リソースであるS\~onaveeb(ワードウェブ)に適用され,意味探索を利用した言語間逆辞書機能を導入し,拡張・強化することを目的としている。
このシステムの性能は、エストニア語とロシア語の翻訳を含むように拡張された、既存のラベル付き英語の単語と定義のデータセットと、同義関係を用いて語彙資源自体から評価データを抽出する新しいラベル付き評価アプローチの両方を用いて評価される。
評価結果は, モデル学習を伴わない情報検索に基づく意味探索手法が実現可能であり, 言語横断的な評価手法を用いて, 言語横断的な評価手法で, 言語横断的な評価手法で, 言語横断的な評価手法で, 言語横断的な評価手法で, 言語横断的な評価手法で, 言語横断的な評価手法で, 言語横断的な評価手法で, エストニア語を含む訓練データを用いて, 単言語的設定で1位と2位にランク付けできることを示す。
関連論文リスト
- MINERS: Multilingual Language Models as Semantic Retrievers [23.686762008696547]
本稿では,意味検索タスクにおける多言語言語モデルの有効性を評価するためのベンチマークであるMINERSを紹介する。
我々は,200以上の多言語にわたるサンプルの検索において,LMの堅牢性を評価する包括的なフレームワークを構築した。
以上の結果から,意味論的に類似した埋め込みを検索することで,最先端のアプローチと競合する性能が得られることが示された。
論文 参考訳(メタデータ) (2024-06-11T16:26:18Z) - Presence or Absence: Are Unknown Word Usages in Dictionaries? [6.185216877366987]
我々は,フィンランド語,ロシア語,ドイツ語の共用課題であるAXOLOTL-24の評価を行った。
未知の単語使用量と辞書エントリ間のマッピングを予測するために,グラフベースのクラスタリング手法を用いる。
私たちのシステムはフィンランド語とドイツ語で第1位、ロシア語で第2位、Subtask 2テストフェーズのリーダーボードで第2位にランクインします。
論文 参考訳(メタデータ) (2024-06-02T07:57:45Z) - Cross-lingual Contextualized Phrase Retrieval [63.80154430930898]
そこで本研究では,言語間関係の単語検索を多義的に行うタスクの定式化を提案する。
我々は、コントラスト学習を用いて、言語間コンテクスト対応句検索(CCPR)を訓練する。
フレーズ検索タスクでは、CCPRはベースラインをかなり上回り、少なくとも13ポイント高いトップ1の精度を達成する。
論文 参考訳(メタデータ) (2024-03-25T14:46:51Z) - CompoundPiece: Evaluating and Improving Decompounding Performance of
Language Models [77.45934004406283]
複合語を構成語に分割する作業である「分解」を体系的に研究する。
We introduced a dataset of 255k compound and non-compound words across 56 various languages obtained from Wiktionary。
分割のための専用モデルを訓練するための新しい手法を導入する。
論文 参考訳(メタデータ) (2023-05-23T16:32:27Z) - BRENT: Bidirectional Retrieval Enhanced Norwegian Transformer [1.911678487931003]
検索ベースの言語モデルは、質問応答タスクにますます採用されている。
我々はREALMフレームワークを適用し,ノルウェー初の検索モデルを開発した。
本研究では,このような学習により,抽出質問応答における読み手のパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-04-19T13:40:47Z) - Cross-language Sentence Selection via Data Augmentation and Rationale
Training [22.106577427237635]
雑音のある並列文データに対するデータ拡張と負のサンプリング技術を用いて、言語間埋め込みに基づくクエリ関連モデルの学習を行う。
その結果、同じ並列データでトレーニングされた複数の最先端機械翻訳+モノリンガル検索システムよりも、このアプローチが優れているか、あるいは優れていることが示された。
論文 参考訳(メタデータ) (2021-06-04T07:08:47Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z) - Leveraging Cognitive Search Patterns to Enhance Automated Natural
Language Retrieval Performance [0.0]
ユーザの検索行動を模倣する認知的再構成パターンが強調されている。
問合せの概念表現を考慮し,これらのパターンの適用を形式化する。
遺伝的アルゴリズムに基づく重み付けプロセスでは、概念的役割タイプに応じて用語に重点を置くことができる。
論文 参考訳(メタデータ) (2020-04-21T14:13:33Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z) - Lexical Sememe Prediction using Dictionary Definitions by Capturing
Local Semantic Correspondence [94.79912471702782]
セメムは人間の言語の最小の意味単位として定義されており、多くのNLPタスクで有用であることが証明されている。
本稿では,このようなマッチングを捕捉し,セメムを予測できるセメム対応プールモデルを提案する。
我々は,有名なSememe KB HowNetのモデルとベースライン手法を評価し,そのモデルが最先端のパフォーマンスを実現することを発見した。
論文 参考訳(メタデータ) (2020-01-16T17:30:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。