論文の概要: Convolutional Neural Networks applied to sky images for short-term solar
irradiance forecasting
- arxiv url: http://arxiv.org/abs/2005.11246v1
- Date: Fri, 22 May 2020 15:57:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 08:57:06.299420
- Title: Convolutional Neural Networks applied to sky images for short-term solar
irradiance forecasting
- Title(参考訳): 短期太陽放射予測のためのスカイイメージへの畳み込みニューラルネットワークの適用
- Authors: Quentin Paletta, Joan Lasenby
- Abstract要約: 本研究は, 深部畳み込みニューラルネットワークの2~20分間の照度予測への適用に関する予備的な結果を示す。
パリザウ(フランス)で8ヶ月にわたって収集された光度測定とそれに対応する天空画像を用いて,時間分解能を2分間で評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the advances in the field of solar energy, improvements of solar
forecasting techniques, addressing the intermittent electricity production,
remain essential for securing its future integration into a wider energy
supply. A promising approach to anticipate irradiance changes consists of
modeling the cloud cover dynamics from ground taken or satellite images. This
work presents preliminary results on the application of deep Convolutional
Neural Networks for 2 to 20 min irradiance forecasting using hemispherical sky
images and exogenous variables. We evaluate the models on a set of irradiance
measurements and corresponding sky images collected in Palaiseau (France) over
8 months with a temporal resolution of 2 min. To outline the learning of neural
networks in the context of short-term irradiance forecasting, we implemented
visualisation techniques revealing the types of patterns recognised by trained
algorithms in sky images. In addition, we show that training models with past
samples of the same day improves their forecast skill, relative to the smart
persistence model based on the Mean Square Error, by around 10% on a 10 min
ahead prediction. These results emphasise the benefit of integrating previous
same-day data in short-term forecasting. This, in turn, can be achieved through
model fine tuning or using recurrent units to facilitate the extraction of
relevant temporal features from past data.
- Abstract(参考訳): 太陽エネルギー分野の進歩にもかかわらず、断続的な電力生産に対処する太陽予測技術の改善は、将来のエネルギー供給への統合を確保する上で不可欠である。
照度変化を予測するための有望なアプローチは、地上撮影や衛星画像から雲のカバーダイナミクスをモデル化することである。
本研究は,半球スカイ画像と外因性変数を用いた2~20分間の照度予測のための深層畳み込みニューラルネットワークの適用に関する予備結果を示す。
2分間の時間分解能で8ヶ月以上にわたってパリザウで収集された一連の照度測定と対応する天空画像のモデルを評価した。
短時間の照度予測の文脈でニューラルネットワークの学習を概説するため,スカイイメージのトレーニングアルゴリズムによって認識されるパターンの種類を可視化する手法を実装した。
さらに,同日過去のサンプルを用いたトレーニングモデルでは,平均平方誤差に基づくスマート永続化モデルと比較して,10分間の事前予測で約10%,予測スキルが向上することを示した。
これらの結果は、短期予測における過去の同日データの統合の利点を強調している。
これは、モデル微調整や、過去のデータから関連する時間的特徴の抽出を容易にするために繰り返し単位を用いることで達成できる。
関連論文リスト
- Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
スコアベース拡散モデルは、多くの依存変数上の確率分布をモデル化するための新しいアプローチを提供する。
本手法は,超解速気象予測のための拡散モデルから多くの試料を発生させることにより,日頭太陽照度予測に適用する。
論文 参考訳(メタデータ) (2023-02-01T01:32:25Z) - Omnivision forecasting: combining satellite observations with sky images
for improved intra-hour solar energy predictions [0.0]
断続的再生可能エネルギー源の電力網への統合は困難である。
雲の閉塞による発電の短期的な変化は、異なる時間スケールで予測できる。
本研究では,これら2つの相補的な視点をクラウドのカバーとして,単一の機械学習フレームワークに統合する。
論文 参考訳(メタデータ) (2022-06-07T11:52:09Z) - Seamless lightning nowcasting with recurrent-convolutional deep learning [2.175391729845306]
未来に向けて5分間の時間分解能で雷の発生を予測する深層学習モデルが提示される。
このモデルは、対流の発生を認識・予測できる再帰的・時間的アーキテクチャに基づいている。
予測は、嵐物体の検出と追跡を使わずに、静止格子上で実行される。
論文 参考訳(メタデータ) (2022-03-15T12:54:17Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Benchmarking of Deep Learning Irradiance Forecasting Models from Sky
Images -- an in-depth Analysis [0.0]
我々は4つのよく使われるディープラーニングアーキテクチャを訓練し、半球空画像のシーケンスから太陽の照度を予測する。
その結果、時間的側面の符号化は予測を大幅に改善し、10分予測スキルはテスト年度で20.4%に達した。
一般的なセットアップでは、ディープラーニングモデルは"非常にスマートな永続化モデル"のように振る舞う傾向があり、永続モデルと時間的に一致し、最もペナルティの高いエラーを軽減します。
論文 参考訳(メタデータ) (2021-02-01T09:31:14Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。