Demonstration of dipolar-induced enhancement of parametric effects in
polariton waveguides
- URL: http://arxiv.org/abs/2005.11385v2
- Date: Sat, 19 Sep 2020 09:48:35 GMT
- Title: Demonstration of dipolar-induced enhancement of parametric effects in
polariton waveguides
- Authors: Daniel G. Su\'arez-Forero, Fabrizio Riminucci, Vincenzo Ardizzone,
Nicholas Karpowicz, Eugenio Maggiolini, Guido Macorini, Giovanni Lerario,
Francesco Todisco, Milena De Giorgi, Lorenzo Dominici, Dario Ballarini,
Kenneth West, Loren Pfeiffer, Giuseppe Gigli, Alessandra S. Lanotte, Daniele
Sanvitto
- Abstract summary: Exciton-polaritons are hybrid light-matter excitations arising from the non-fluidative coupling of a photonic mode and an excitonic resonance.
We show that dipolar interactions can be used to enhance parametric effects such as self-phase modulation in waveguide polaritons.
- Score: 40.96261204117952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exciton-polaritons are hybrid light-matter excitations arising from the
non-perturbative coupling of a photonic mode and an excitonic resonance.
Behaving as interacting photons, they show optical third-order nonlinearities
providing effects such as optical parametric oscillation or amplification. It
has been suggested that polariton-polariton interactions can be greatly
enhanced by inducing aligned electric dipoles in their excitonic part. However
direct evidence of a true particle-particle interaction, such as superfluidity
or parametric scattering is still missing. In this work, we demonstrate that
dipolar interactions can be used to enhance parametric effects such as
self-phase modulation in waveguide polaritons. By quantifying these optical
nonlinearities we provide a reliable experimental measurement of the direct
dipolar enhancement of polariton-polariton interactions.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Nonlinear spectroscopy of semiconductor moiré materials [0.0]
We use time-resolved nonlinear pump--probe measurements to reveal features of semiconductor moir'e materials.
We generate a high density of virtual excitons or exciton--polarons in various moir'e minibands.
arXiv Detail & Related papers (2024-02-26T15:02:51Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - From hybrid polariton to dipolariton using non-hermitian Hamiltonians to
handle particle lifetimes [0.0]
We show how under a field increase, the hybrid polariton made of photon coupled to hybrid carriers transforms into a dipolariton made of photon coupled to direct and indirect excitons.
While the hybrid polaritons display a spectral singularity, where the eigenvalues coalesce and known as exceptional point, that depends on detuning and lifetimes, we find that the three dipolaritonic states display an anti-crossing without exceptional point.
arXiv Detail & Related papers (2021-12-16T10:58:47Z) - Formation of Matter-Wave Polaritons in an Optical Lattice [0.0]
polariton is a quasiparticle formed by strong coupling of a photon to a matter excitation.
We develop an ultracold-atom analogue of an exciton-polariton system in which interacting polaritonic phases can be studied.
Our work opens up novel possibilities for studies of polaritonic quantum matter.
arXiv Detail & Related papers (2021-09-06T04:46:31Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Interplay between polarization and quantum correlations of confined
polaritons [0.0]
We investigate polariton quantum correlations in a coherently driven box cavity in the low driving regime.
We obtain analytical expressions for the steady-state polarization-resolved polariton populations and second-order correlation functions.
We show that systems with large biexciton binding energies, such as atomically thin semiconductors, are promising platforms for realizing strong polariton antibunching.
arXiv Detail & Related papers (2021-04-28T02:45:54Z) - Exciton-polariton solitons in a semiconductor microwire of finite size [0.0]
We investigate the dynamics of bright exciton-polariton solitons in a finite-size microcavity waveguide.
An exact bright-soliton solution to the model equations of motion, consisting of a periodic train of polariton pulses, is obtained in terms of Jacobi elliptic functions.
Results suggest that the size of a microwire waveguide plays a relevant role in obtaining a quantitative estimate of the energy that could be conveyed by polariton solitons propagating in the medium.
arXiv Detail & Related papers (2020-12-04T09:04:44Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.