From hybrid polariton to dipolariton using non-hermitian Hamiltonians to
handle particle lifetimes
- URL: http://arxiv.org/abs/2112.08779v1
- Date: Thu, 16 Dec 2021 10:58:47 GMT
- Title: From hybrid polariton to dipolariton using non-hermitian Hamiltonians to
handle particle lifetimes
- Authors: Aur\'elia Chenu, Shiue-Yuan Shiau, Ching-Hang Chien, Monique Combescot
- Abstract summary: We show how under a field increase, the hybrid polariton made of photon coupled to hybrid carriers transforms into a dipolariton made of photon coupled to direct and indirect excitons.
While the hybrid polaritons display a spectral singularity, where the eigenvalues coalesce and known as exceptional point, that depends on detuning and lifetimes, we find that the three dipolaritonic states display an anti-crossing without exceptional point.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider photons strongly coupled to the excitonic excitations of a
coupled quantum well, in the presence of an electric field. We show how under a
field increase, the hybrid polariton made of photon coupled to hybrid carriers
lying in the two wells, transforms into a dipolariton made of photon coupled to
direct and indirect excitons. We also show how the cavity photon lifetime and
the coherence time of the carrier wave vectors, that we analytically handle
through non-hermitian Hamiltonians, affect these polaritonic states. While the
hybrid polaritons display a spectral singularity, where the eigenvalues
coalesce and known as exceptional point, that depends on detuning and
lifetimes, we find that the three dipolaritonic states display an anti-crossing
without exceptional point, due to interaction between photons, direct and
indirect excitons.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Fermionization and collective excitations of 1D polariton lattices [0.0]
We show that the hallmarks of correlation and fermionization in a one-dimensional exciton-polaritons gas can be observed with state-of-the-art technology.
Our work encourages future experiments aimed at observing, for the first time, strongly correlated exciton-polariton physics.
arXiv Detail & Related papers (2024-05-03T17:09:12Z) - Ultra-strong trion-polaritons [0.0]
Trion-polaritons (TP) in microcavity semiconductors are a promising avenue for realizing strong polariton interactions and many-body polariton phases.
We develop a quantum field theoretical formalism to study the formation of trion-polaritons in a microcavity semiconductor doped with itinerant electrons.
arXiv Detail & Related papers (2024-03-15T21:26:35Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Cavity Induced Collective Behavior in the Polaritonic Ground State [0.0]
We investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous quantum cavity field.
The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles.
The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons.
arXiv Detail & Related papers (2022-07-07T17:09:57Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Demonstration of dipolar-induced enhancement of parametric effects in
polariton waveguides [40.96261204117952]
Exciton-polaritons are hybrid light-matter excitations arising from the non-fluidative coupling of a photonic mode and an excitonic resonance.
We show that dipolar interactions can be used to enhance parametric effects such as self-phase modulation in waveguide polaritons.
arXiv Detail & Related papers (2020-05-22T20:45:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.