Thermal aspects of interacting quantum gases in Lorentz-violating
scenarios
- URL: http://arxiv.org/abs/2005.11453v2
- Date: Fri, 12 Mar 2021 12:58:48 GMT
- Title: Thermal aspects of interacting quantum gases in Lorentz-violating
scenarios
- Authors: A. A. Ara\'ujo Filho, J. A. A. S. Reis
- Abstract summary: We study the interaction of quantum gases in Lorentz-violating scenarios considering both boson and fermion sectors.
particle number, entropy and energy exhibit an extensive characteristic even in the presence of Lorentz violation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study the interaction of quantum gases in Lorentz-violating
scenarios considering both boson and fermion sectors. In the latter case, we
investigate the consequences of a system governed by scalar, vector,
pseudovector and tensor operators. Besides, we examine the implications of
$\left( \hat{k}_{a}\right) ^{\kappa }$ and $\left( \hat{k}_{c}\right) ^{\kappa
\xi }$ operators for the boson case as well. For doing so, we regard the grand
canonical ensemble seeking the so-called partition function, which suffices to
provide analytically the calculations of interest, i.e., mean particle number,
entropy, mean total energy and pressure. Furthermore, in low temperature
regime, such quantities converge until reaching a similar behavior being in
contrast with what is shown in high temperature regime, which brings out the
differentiation of their effects. In addition, particle number, entropy and
energy exhibit an extensive characteristic even in the presence of Lorentz
violation. Finally, for peseudovector and tensor operators, we notice a
remarkable feature due to the breaking process of spin degeneracy: the system
turns out to have greater energy and particle number for the spin-down
particles in comparison with spin-up ones.
Related papers
- Generalization of the exact Eriksen and exponential operators of the Foldy-Wouthuysen transformation to arbitrary-spin particles in nonstationary fields [55.2480439325792]
We use the Foldy-Wouthuysen transformation which allows one to obtain the Schr"odinger picture of relativistic quantum mechanics.
Unlike previous publications, we determine exact Eriksen and exponential operators of the Foldy-Wouthuysen transformation.
arXiv Detail & Related papers (2024-10-27T18:41:50Z) - Entanglement Transition due to particle losses in a monitored fermionic chain [0.0]
We study the dynamics of the entanglement entropy under quantum jumps that induce local particle losses in a model of free fermions hopping.
We show that by tuning the system parameters, a measurement-induced entanglement transition occurs where the entanglement entropy scaling changes from logarithmic to area-law.
arXiv Detail & Related papers (2024-08-07T11:30:09Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Effects of external field and potential on non-relativistic quantum particles in disclinations background [0.0]
In this work, we investigate the behavior of non-relativistic quantum particles immersed in a cosmic string space-time background.
We employ analytical methods to solve the associated wave equation, leading to the derivation of eigenvalue solutions for this quantum system.
In an extension of our investigation, we explore the thermodynamic and magnetic properties of the quantum system when it is exposed to non-zero temperature conditions.
arXiv Detail & Related papers (2024-05-26T05:42:49Z) - Information Scrambling in Free Fermion Systems with a Sole Interaction [7.11602492803827]
We construct Brownian circuits and Clifford circuits consisting of a free fermion hopping term and a sole interaction.
In both circuits, our findings reveal the emergence of operator scrambling.
We demonstrate that in the one-dimensional system, both the operator and entanglement exhibit diffusive scaling.
arXiv Detail & Related papers (2023-10-10T22:11:38Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Entanglement-spectrum characterization of ground-state nonanalyticities
in coupled excitation-phonon models [0.0]
Small-polaron transitions are analyzed through the prism of the entanglement spectrum of the excitation-phonon system.
The behavior of the entanglement entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific entanglement-spectrum eigenvalue.
arXiv Detail & Related papers (2020-01-30T08:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.