論文の概要: Learning Joint Nonlinear Effects from Single-variable Interventions in
the Presence of Hidden Confounders
- arxiv url: http://arxiv.org/abs/2005.11528v2
- Date: Tue, 16 Jun 2020 06:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 03:44:44.536325
- Title: Learning Joint Nonlinear Effects from Single-variable Interventions in
the Presence of Hidden Confounders
- Title(参考訳): 隠れた共同設立者の存在下での単一変数干渉による共同非線形効果の学習
- Authors: Sorawit Saengkyongam and Ricardo Silva
- Abstract要約: 隠れた共同設立者の存在下での複数同時介入の効果を推定する手法を提案する。
非線形連続構造因果モデルからデータが生成されるという仮定の下で、同定可能性を証明する。
また,本研究の総合的な実験により,同定可能性の検証や,合成データと実世界データの両方のベースラインに対するアプローチの性能の比較を行う。
- 参考スコア(独自算出の注目度): 9.196779204457059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an approach to estimate the effect of multiple simultaneous
interventions in the presence of hidden confounders. To overcome the problem of
hidden confounding, we consider the setting where we have access to not only
the observational data but also sets of single-variable interventions in which
each of the treatment variables is intervened on separately. We prove
identifiability under the assumption that the data is generated from a
nonlinear continuous structural causal model with additive Gaussian noise. In
addition, we propose a simple parameter estimation method by pooling all the
data from different regimes and jointly maximizing the combined likelihood. We
also conduct comprehensive experiments to verify the identifiability result as
well as to compare the performance of our approach against a baseline on both
synthetic and real-world data.
- Abstract(参考訳): 隠れた共同設立者の存在下での複数同時介入の効果を推定する手法を提案する。
隠れた結合の問題を克服するために,観測データだけでなく,各処理変数が別々に介入される単一変数の介入の集合にもアクセス可能な設定を考える。
付加ガウス雑音を伴う非線形連続的構造因果モデルからデータを生成することを仮定して同定可能性を示す。
さらに,異なるレジームから全てのデータをプールし,組み合わせ確率を最大化することにより,簡易なパラメータ推定手法を提案する。
また,本研究の総合的な実験により,同定可能性の検証や,合成データと実世界データの両方のベースラインに対するアプローチの性能の比較を行う。
関連論文リスト
- Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
本稿では,連続治療の因果効果を推定するための新しいフレームワークであるContiVAEについて述べる。
ContiVAEは既存の手法を最大62%上回り、その堅牢性と柔軟性を示す。
論文 参考訳(メタデータ) (2024-10-21T07:24:26Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
負の制御結果を用いて遅延不均一性を調整する頑健なポストインテグレート推論(PII)手法を提案する。
我々の仮定リーン半推論手法は、仲介者、共同設立者、モデレーターを考慮に入れた予測された直接効果推定に頑健さと一般性を広げる。
提案した二重頑健な推定器は最小限の仮定の下で一貫性があり、機械学習アルゴリズムによるデータ適応推定を容易にする。
論文 参考訳(メタデータ) (2024-10-07T12:52:38Z) - Disentangle Estimation of Causal Effects from Cross-Silo Data [14.684584362172666]
本稿では,モデルパラメータのシームレスなクロスサイロ伝送を容易にするために設計された,革新的なアンタングルアーキテクチャを提案する。
種々の欠落領域におけるバイアスを効果的に緩和するために,グローバルな制約を方程式に導入する。
我々の手法は最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-01-04T09:05:37Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Disentangling Causal Effects from Sets of Interventions in the Presence
of Unobserved Confounders [19.32843499761667]
我々は,観察データと介入セットの両方から,単一介入の効果を学習することを目的とする。
異なるレシスタンスからデータをプールすることで因果モデルパラメータを学習するアルゴリズムを提案する。
本手法の有効性は,合成データと実世界のデータの両方で実証的に実証された。
論文 参考訳(メタデータ) (2022-10-11T13:42:36Z) - Differentiable Causal Discovery Under Latent Interventions [3.867363075280544]
最近の研究は、介入した変数が未知であっても、勾配に基づく手法による介入データを活用することにより因果発見の有望な結果を示している。
複数の介入分布と1つの観察分布からサンプリングされた広範囲なデータセットを用いたシナリオを想定するが、どの分布がそれぞれのサンプルに由来するのか、どのように介入がシステムに影響を及ぼすのかはわからない。
本稿では、ニューラルネットワークと変分推論に基づいて、無限混合物間の共用因果グラフを学習することで、このシナリオに対処する手法を提案する。
論文 参考訳(メタデータ) (2022-03-04T14:21:28Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
相関データに対する最も顕著な絡み合うアプローチの挙動を解析することにより、現実のシナリオにギャップを埋める。
本研究では,データセットの体系的相関が学習され,潜在表現に反映されていることを示す。
また、トレーニング中の弱い監督や、少数のラベルで事前訓練されたモデルを修正することで、これらの潜伏相関を解消する方法を実証する。
論文 参考訳(メタデータ) (2020-06-14T12:47:34Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
我々は,連続的評価介入の効果を推定する問題に対処するため,GAN(Generative Adversarial Network)フレームワークを構築した。
我々のモデルであるSCIGANは柔軟であり、いくつかの異なる継続的な介入に対する対実的な結果の同時推定が可能である。
継続的な介入に移行することによって生じる課題に対処するために、差別者のための新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T18:46:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。