Decomposition of symmetric separable states and ground state energy of
bosonic systems
- URL: http://arxiv.org/abs/2005.11607v3
- Date: Sun, 2 May 2021 10:05:54 GMT
- Title: Decomposition of symmetric separable states and ground state energy of
bosonic systems
- Authors: Stephan Weis
- Abstract summary: We prove that every symmetric separable state admits a convex decomposition into symmetric pure product states.
We discuss the decomposition in the context of numerical ranges and ground state problems of infinite bosonic systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We prove that every symmetric separable state admits a convex decomposition
into symmetric pure product states. While the result is not new in itself, here
we focus on convex geometry. We discuss the decomposition in the context of
numerical ranges and ground state problems of infinite bosonic systems.
Related papers
- Mixed-state phases from local reversibility [3.3599784433577886]
We propose a refined definition of mixed-state phase equivalence based on locally reversible channel circuits.<n>We show that such circuits preserve topological degeneracy and the locality of all operators including both strong and weak symmetries.
arXiv Detail & Related papers (2025-07-03T03:59:07Z) - Translation symmetry restoration in integrable systems: the noninteracting case [0.16385815610837165]
We study translation symmetry restoration in integrable systems.<n>In particular, we consider non-interacting spinless fermions on the lattice prepared in non-equilibrium states invariant under $nu>1$ lattice shifts.<n>We show that, differently from random unitary circuits where symmetry restoration occurs abruptly for times proportional to the subsystem size, here symmetry is restored smoothly and over timescales of the order of the subsystem size squared.
arXiv Detail & Related papers (2025-06-17T14:11:31Z) - Mixed state concurrence for symmetric systems [0.0]
We present a method to quantify entanglement in mixed states of highly symmetric systems.<n>We use symmetry to explicitly construct unentangled densities, which are then optimally included in the thermal mixed state.
arXiv Detail & Related papers (2025-05-30T16:34:27Z) - Symmetry defects and gauging for quantum states with matrix product unitary symmetries [0.3277163122167433]
We study the consequences of the existence of a finite group of matrix product unitary (MPU) symmetries for matrix product states (MPS)
We introduce a condition, block independence, under which we can gauge the symmetries by promoting the symmetry defects to gauge degrees of freedom.
arXiv Detail & Related papers (2025-02-27T16:45:33Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)
Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Entanglement asymmetry and symmetry defects in boundary conformal field theory [0.0]
A state in a quantum system with a given global symmetry, $G$, can be sensitive to the presence of boundaries.
We investigate how conformal invariant boundary conditions influence the symmetry breaking for both finite and compact Lie groups.
We further explore the entanglement asymmetry following a global quantum quench, where a symmetry-broken state evolves under a symmetry-restoring Hamiltonian.
arXiv Detail & Related papers (2024-11-14T20:05:25Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Non-abelian symmetry-resolved entanglement entropy [1.433758865948252]
We introduce a framework for symmetry-resolved entanglement entropy with a non-abelian symmetry group.
We derive exact formulas for the average and the variance of the typical entanglement entropy for an ensemble of random pure states with fixed non-abelian charges.
We show that, compared to the abelian case, new phenomena arise from the interplay of locality and non-abelian symmetry.
arXiv Detail & Related papers (2024-05-01T16:06:48Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Asymmetry activation and its relation to coherence under permutation operation [53.64687146666141]
A Dicke state and its decohered state are invariant for permutation.
When another qubits state to each of them is attached, the whole state is not invariant for permutation, and has a certain asymmetry for permutation.
arXiv Detail & Related papers (2023-11-17T03:33:40Z) - A universal formula for the entanglement asymmetry of matrix product
states [0.0]
We provide a universal formula for the entanglement asymmetry of matrix product states with finite bond dimension.
We show that the entanglement asymmetry of any compact -- discrete or continuous -- group depends only on the symmetry breaking pattern, and is not related to any other microscopic features.
arXiv Detail & Related papers (2023-10-03T11:15:19Z) - Symmetry protected entanglement in random mixed states [0.0]
We study the effect of symmetry on tripartite entanglement properties of typical states in symmetric sectors of Hilbert space.
In particular, we consider Abelian symmetries and derive an explicit expression for the logarithmic entanglement negativity of systems with $mathbbZ_N$ and $U(1)$ symmetry groups.
arXiv Detail & Related papers (2021-11-30T19:00:07Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Symmetry Breaking in Symmetric Tensor Decomposition [44.181747424363245]
We consider the nonsymmetry problem associated with computing the points rank decomposition of symmetric tensors.
We show that critical points the loss function is detected by standard methods.
arXiv Detail & Related papers (2021-03-10T18:11:22Z) - Stationary State Degeneracy of Open Quantum Systems with Non-Abelian
Symmetries [3.423206565777368]
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries.
We apply these results within the context of open quantum many-body systems.
We find that the derived bound, which scales at least cubically in the system size the $SU(2)$ symmetric cases, is often saturated.
arXiv Detail & Related papers (2019-12-27T15:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.