Don't Treat the Symptom, Find the Cause! Efficient
Artificial-Intelligence Methods for (Interactive) Debugging
- URL: http://arxiv.org/abs/2306.12850v1
- Date: Thu, 22 Jun 2023 12:44:49 GMT
- Title: Don't Treat the Symptom, Find the Cause! Efficient
Artificial-Intelligence Methods for (Interactive) Debugging
- Authors: Patrick Rodler
- Abstract summary: In the modern world, we are permanently using, leveraging, interacting with, and relying upon systems of ever higher sophistication.
In this thesis, we will give an introduction to the topic of model-based diagnosis, point out the major challenges in the field, and discuss a selection of approaches from our research addressing these issues.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the modern world, we are permanently using, leveraging, interacting with,
and relying upon systems of ever higher sophistication, ranging from our cars,
recommender systems in e-commerce, and networks when we go online, to
integrated circuits when using our PCs and smartphones, the power grid to
ensure our energy supply, security-critical software when accessing our bank
accounts, and spreadsheets for financial planning and decision making. The
complexity of these systems coupled with our high dependency on them implies
both a non-negligible likelihood of system failures, and a high potential that
such failures have significant negative effects on our everyday life. For that
reason, it is a vital requirement to keep the harm of emerging failures to a
minimum, which means minimizing the system downtime as well as the cost of
system repair. This is where model-based diagnosis comes into play.
Model-based diagnosis is a principled, domain-independent approach that can
be generally applied to troubleshoot systems of a wide variety of types,
including all the ones mentioned above, and many more. It exploits and
orchestrates i.a. techniques for knowledge representation, automated reasoning,
heuristic problem solving, intelligent search, optimization, stochastics,
statistics, decision making under uncertainty, machine learning, as well as
calculus, combinatorics and set theory to detect, localize, and fix faults in
abnormally behaving systems.
In this thesis, we will give an introduction to the topic of model-based
diagnosis, point out the major challenges in the field, and discuss a selection
of approaches from our research addressing these issues.
Related papers
- Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - ALT: An Automatic System for Long Tail Scenario Modeling [15.76033166478158]
We present an automatic system named ALT to deal with this problem.
Several efforts are taken to improve the algorithms used in our system, such as employing various automatic machine learning related techniques.
To build the system, many optimizations are performed from a systematic perspective, and essential modules are armed.
arXiv Detail & Related papers (2023-05-19T02:35:39Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Machine learning-based approach for online fault Diagnosis of Discrete
Event System [0.0]
The problem is the online diagnosis of Automated Production Systems with sensors and actuators delivering discrete binary signals.
We propose a Machine Learning-based approach of a diagnostic system.
arXiv Detail & Related papers (2022-10-24T08:56:13Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
We propose a mathematical model for runtime monitoring and fault detection and identification in perception systems.
We demonstrate our monitoring system, dubbed PerSyS, in realistic simulations using the LGSVL self-driving simulator and the Apollo Auto autonomy software stack.
arXiv Detail & Related papers (2020-11-11T23:03:14Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving cars.
Despite the paramount importance of perception systems, there is no formal approach for system-level monitoring.
We propose a mathematical model for runtime monitoring and fault detection of perception systems.
arXiv Detail & Related papers (2020-05-24T18:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.