論文の概要: Bayesian Conditional GAN for MRI Brain Image Synthesis
- arxiv url: http://arxiv.org/abs/2005.11875v2
- Date: Thu, 22 Apr 2021 15:04:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 06:23:17.811465
- Title: Bayesian Conditional GAN for MRI Brain Image Synthesis
- Title(参考訳): MRI脳画像合成のためのベイズ条件GAN
- Authors: Gengyan Zhao, Mary E. Meyerand and Rasmus M. Birn
- Abstract要約: 本稿では, 画像合成精度を向上させるため, ベイズ条件生成対向ネットワーク (GAN) をコンクリートドロップアウトで用いることを提案する。
この方法は102名の被験者の脳腫瘍データセットを用いてT1wからT2wのMR画像変換によって検証される。
従来のベイズニューラルネットワークとモンテカルロのドロップアウトを比較すると,提案手法の結果はp値0.0186の相当低いRMSEに達する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a powerful technique in medical imaging, image synthesis is widely used in
applications such as denoising, super resolution and modality transformation
etc. Recently, the revival of deep neural networks made immense progress in the
field of medical imaging. Although many deep leaning based models have been
proposed to improve the image synthesis accuracy, the evaluation of the model
uncertainty, which is highly important for medical applications, has been a
missing part. In this work, we propose to use Bayesian conditional generative
adversarial network (GAN) with concrete dropout to improve image synthesis
accuracy. Meanwhile, an uncertainty calibration approach is involved in the
whole pipeline to make the uncertainty generated by Bayesian network
interpretable. The method is validated with the T1w to T2w MR image translation
with a brain tumor dataset of 102 subjects. Compared with the conventional
Bayesian neural network with Monte Carlo dropout, results of the proposed
method reach a significant lower RMSE with a p-value of 0.0186. Improvement of
the calibration of the generated uncertainty by the uncertainty recalibration
method is also illustrated.
- Abstract(参考訳): 医用画像の強力な技術として、画像合成は認知、超分解能、モダリティ変換などの応用で広く利用されている。
近年,深層ニューラルネットワークの復活は医用画像の分野において大きな進歩を遂げている。
画像合成精度を向上させるために, 深い傾きに基づくモデルが多数提案されているが, 医学的応用において重要となる不確かさの評価が欠落している。
本研究では,具体的ドロップアウトにより画像合成精度を向上させるため,ベイズ条件付き生成逆数ネットワーク(GAN)を提案する。
一方、ベイズネットワークが生成する不確実性を解釈できるように、パイプライン全体の不確実性校正手法が関与している。
この方法は102名の被験者の脳腫瘍データセットを用いてT1wからT2wのMR画像変換によって検証される。
モンテカルロドロップアウトを用いた従来のベイズ型ニューラルネットワークと比較すると,提案手法は,p値0.0186のかなり低いrmseに到達した。
また, 不確実性の校正法により発生した不確実性の校正も改善した。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Uncertainty Estimation in Contrast-Enhanced MR Image Translation with
Multi-Axis Fusion [6.727287631338148]
我々は,新しいモデル不確実性定量化手法であるマルチ軸核融合(MAF)を提案する。
提案手法は,T1,T2,T2-FLAIRスキャンに基づくコントラスト強調T1強調画像の合成に応用される。
論文 参考訳(メタデータ) (2023-11-20T20:09:48Z) - Conversion Between CT and MRI Images Using Diffusion and Score-Matching
Models [7.745729132928934]
本稿では,拡散モデルとスコアマッチングモデルという,新たなディープラーニングフレームワークを提案する。
以上の結果から, 拡散およびスコアマッチングモデルにより, CNNおよびGANモデルよりも優れた合成CT画像が生成されることがわかった。
本研究は,相補的な画像モダリティを用いて得られた画像に基づいて高品質な画像を生成するために,拡散とスコアマッチングモデルが優れていることを示唆する。
論文 参考訳(メタデータ) (2022-09-24T23:50:54Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Deep Learning Neural Network for Lung Cancer Classification: Enhanced
Optimization Function [28.201018420730332]
本研究の目的は、畳み込みニューラルネットワークのプール層におけるマルチスペース画像を用いて、全体的な予測精度の向上と、処理時間を短縮することである。
提案手法は,畳み込みニューラルネットワークのプール層におけるマルチスペース画像を用いて,全体の精度を向上させるオートエンコーダシステムと肺がんの予測を行う。
論文 参考訳(メタデータ) (2022-08-05T18:41:17Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Convolutional Neural Network to Restore Low-Dose Digital Breast
Tomosynthesis Projections in a Variance Stabilization Domain [15.149874383250236]
畳み込みニューラルネットワーク(CNN)は、低線量(LD)投影を標準的なフル線量(FD)取得と同等の画質に復元するために提案されている。
平均二乗誤差(MNSE)、正規化訓練時間、ノイズ空間相関の点で従来のデータ駆動方式と比較して、ネットワークは優れた結果を得た。
論文 参考訳(メタデータ) (2022-03-22T13:31:47Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。