論文の概要: Efficient Medical Image Restoration via Reliability Guided Learning in Frequency Domain
- arxiv url: http://arxiv.org/abs/2504.11286v1
- Date: Tue, 15 Apr 2025 15:26:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:06:42.416266
- Title: Efficient Medical Image Restoration via Reliability Guided Learning in Frequency Domain
- Title(参考訳): 周波数領域における信頼性指導学習による医用画像の効率的な復元
- Authors: Pengcheng Zheng, Kecheng Chen, Jiaxin Huang, Bohao Chen, Ju Liu, Yazhou Ren, Xiaorong Pu,
- Abstract要約: 医用画像復元タスクは、劣化した観察から高品質な画像を回復することを目的としており、多くの臨床シナリオにおいて創発的な欲求を示す。
既存のディープラーニングに基づく復元手法は、計算効率の良い再構成結果のレンダリングに苦慮している。
本稿では、周波数領域における信頼性誘導学習による軽量トランスフォーマーを用いたLRformerを提案する。
- 参考スコア(独自算出の注目度): 29.81704480466466
- License:
- Abstract: Medical image restoration tasks aim to recover high-quality images from degraded observations, exhibiting emergent desires in many clinical scenarios, such as low-dose CT image denoising, MRI super-resolution, and MRI artifact removal. Despite the success achieved by existing deep learning-based restoration methods with sophisticated modules, they struggle with rendering computationally-efficient reconstruction results. Moreover, they usually ignore the reliability of the restoration results, which is much more urgent in medical systems. To alleviate these issues, we present LRformer, a Lightweight Transformer-based method via Reliability-guided learning in the frequency domain. Specifically, inspired by the uncertainty quantification in Bayesian neural networks (BNNs), we develop a Reliable Lesion-Semantic Prior Producer (RLPP). RLPP leverages Monte Carlo (MC) estimators with stochastic sampling operations to generate sufficiently-reliable priors by performing multiple inferences on the foundational medical image segmentation model, MedSAM. Additionally, instead of directly incorporating the priors in the spatial domain, we decompose the cross-attention (CA) mechanism into real symmetric and imaginary anti-symmetric parts via fast Fourier transform (FFT), resulting in the design of the Guided Frequency Cross-Attention (GFCA) solver. By leveraging the conjugated symmetric property of FFT, GFCA reduces the computational complexity of naive CA by nearly half. Extensive experimental results in various tasks demonstrate the superiority of the proposed LRformer in both effectiveness and efficiency.
- Abstract(参考訳): 医用画像復元タスクは、劣化した観察から高品質な画像を回復することを目的としており、低用量CT像のデノイング、MRI超解像、MRIアーティファクトの除去など、多くの臨床シナリオにおいて創発的な欲求を示す。
高度なモジュールを持つ既存のディープラーニングベースの復元手法によって達成された成功にもかかわらず、計算効率のよい再構成結果のレンダリングに苦慮している。
さらに、医療システムではより緊急な修復結果の信頼性を無視することが多い。
これらの問題を緩和するために、周波数領域における信頼性誘導学習による軽量トランスフォーマーに基づくLRformerを提案する。
具体的には、ベイズニューラルネットワーク(BNN)の不確かさの定量化にインスパイアされ、信頼性の高いルジョン・セマンティック・プライマリ・プロデューサ(RLPP)を開発した。
RLPP はモンテカルロ (MC) 推定器を利用して, 基礎的医用画像セグメンテーションモデル MedSAM 上で複数の推定を行い, 十分に信頼性の高い先行値を生成する。
さらに, 空間領域に先行領域を直接組み込む代わりに, 高速フーリエ変換(FFT)により, クロスアテンション(CA)機構を実対称, 虚対称に分解し, GFCA法を導出する。
FFTの共役対称特性を利用することで、GFCAは単純CAの計算複雑性を半減させる。
各種タスクにおける広範囲な実験結果から,提案したLRフォーマの有効性と効率性の両方において優位性を示す。
関連論文リスト
- On the Foundation Model for Cardiac MRI Reconstruction [6.284878525302227]
本稿では,適応アンロール,チャネルシフト,パターンとコントラスト-プロンプト-UNetを用いた基礎モデルを提案する。
PCP-UNetは画像コントラストとサンプリングパターンプロンプトを備える。
論文 参考訳(メタデータ) (2024-11-15T18:15:56Z) - Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
DIPがアンダーサンプドイメージング計測からどのように情報を回収するかを検討する。
ネットワーク重みと入力の両方を同時に最適化する自己駆動型再構築プロセスを導入する。
提案手法は,ネットワーク入力画像と再構成画像の両方の堅牢かつ安定した関節推定を可能にする,新しいデノイザ正規化項を組み込んだものである。
論文 参考訳(メタデータ) (2024-02-06T15:52:23Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
本稿では,MRIの高速化作業に応用した,ディープラーニングに基づく逆問題解法を提案する。
RecurrentVarNetは複数のブロックから構成されており、それぞれが逆問題を解決するための勾配降下アルゴリズムの1つのアンロール反復に責任を負っている。
提案手法は,公共のマルチチャネル脳データセットから得られた5倍および10倍の加速データに対して,定性的かつ定量的な再構築結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2021-11-18T11:44:04Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
対応する画像分解能の喪失は、医用画像診断の全体的な性能を低下させる。
ディープラーニングベースのシングルイメージスーパーレゾリューション(SISR)アルゴリズムは、全体的な診断フレームワークに革命をもたらした。
本研究は,低周波データから高頻度情報を学習する深層マルチアテンションモジュールを用いたGAN(Generative Adversarial Network)を提案する。
論文 参考訳(メタデータ) (2021-10-22T10:13:46Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Robust partial Fourier reconstruction for diffusion-weighted imaging
using a recurrent convolutional neural network [5.3580471186206005]
繰り返し畳み込みによって実装されたデータ一貫性演算と正規化を交互に行うニューラルネットワークアーキテクチャが導出される。
重み付きネットワークや近位ネットワークのカスケードよりも、再帰的なネットワークによるアンローリングの方がよい結果が得られることを示すことができる。
論文 参考訳(メタデータ) (2021-05-19T20:00:04Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。