SunDown: Model-driven Per-Panel Solar Anomaly Detection for Residential
Arrays
- URL: http://arxiv.org/abs/2005.12181v1
- Date: Mon, 25 May 2020 15:54:30 GMT
- Title: SunDown: Model-driven Per-Panel Solar Anomaly Detection for Residential
Arrays
- Authors: Menghong Feng, Noman Bashir, Prashant Shenoy, David Irwin, Beka
Kosanovic
- Abstract summary: We present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays.
SunDown does not require any new sensors for its fault detection and instead uses a model-driven approach.
Our results show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris, and electrical failures with 99.13% accuracy.
- Score: 1.4174475093445236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been significant growth in both utility-scale and residential-scale
solar installations in recent years, driven by rapid technology improvements
and falling prices. Unlike utility-scale solar farms that are professionally
managed and maintained, smaller residential-scale installations often lack
sensing and instrumentation for performance monitoring and fault detection. As
a result, faults may go undetected for long periods of time, resulting in
generation and revenue losses for the homeowner. In this paper, we present
SunDown, a sensorless approach designed to detect per-panel faults in
residential solar arrays. SunDown does not require any new sensors for its
fault detection and instead uses a model-driven approach that leverages
correlations between the power produced by adjacent panels to detect deviations
from expected behavior. SunDown can handle concurrent faults in multiple panels
and perform anomaly classification to determine probable causes. Using two
years of solar generation data from a real home and a manually generated
dataset of multiple solar faults, we show that our approach has a MAPE of
2.98\% when predicting per-panel output. Our results also show that SunDown is
able to detect and classify faults, including from snow cover, leaves and
debris, and electrical failures with 99.13% accuracy, and can detect multiple
concurrent faults with 97.2% accuracy.
Related papers
- Estimating Residential Solar Potential Using Aerial Data [0.4811810722979911]
Project estimates the solar potential of residential buildings using high quality aerial data.
Project's coverage is limited by the lack of high resolution digital surface map (DSM) data.
We present a deep learning approach that bridges this gap by enhancing widely available low-resolution data.
arXiv Detail & Related papers (2023-06-23T15:37:21Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Data-driven soiling detection in PV modules [58.6906336996604]
We study the problem of estimating the soiling ratio in photo-voltaic (PV) modules.
A key advantage of our algorithms is that they estimate soiling, without needing to train on labelled data.
Our experimental evaluation shows that we significantly outperform current state-of-the-art methods for estimating soiling ratio.
arXiv Detail & Related papers (2023-01-30T14:35:47Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - Domain Knowledge Aids in Signal Disaggregation; the Example of the
Cumulative Water Heater [68.8204255655161]
We present an unsupervised low-frequency method aimed at detecting and disaggregating the power used by Cumulative Water Heaters (CWH) in residential homes.
Our model circumvents the inherent difficulty of unsupervised signal disaggregation by using both the shape of a power spike and its time of occurrence.
Our model, despite its simplicity, offers promising applications: detection of mis-configured CWHs on off-peak contracts and slow performance degradation.
arXiv Detail & Related papers (2022-03-22T10:39:19Z) - Feature Construction and Selection for PV Solar Power Modeling [1.8960797847221296]
Building a model to predict photovoltaic (PV) power generation allows decision-makers to hedge energy shortages.
The solar power output is time-series data dependent on many factors, such as irradiance and weather.
A machine learning framework for 1-hour ahead solar power prediction is developed in this paper based on the historical data.
arXiv Detail & Related papers (2022-02-13T06:49:28Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
We develop a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning.
Our model estimates a location's future solar irradiance based on satellite observations.
We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites.
arXiv Detail & Related papers (2021-12-28T03:13:44Z) - A Multi-Stage model based on YOLOv3 for defect detection in PV panels
based on IR and Visible Imaging by Unmanned Aerial Vehicle [65.99880594435643]
We propose a novel model to detect panel defects on aerial images captured by unmanned aerial vehicle.
The model combines detections of panels and defects to refine its accuracy.
The proposed model has been validated on two big PV plants in the south of Italy.
arXiv Detail & Related papers (2021-11-23T08:04:32Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.