Feature Construction and Selection for PV Solar Power Modeling
- URL: http://arxiv.org/abs/2202.06226v1
- Date: Sun, 13 Feb 2022 06:49:28 GMT
- Title: Feature Construction and Selection for PV Solar Power Modeling
- Authors: Yu Yang, Jia Mao, Richard Nguyen, Annas Tohmeh, Hen-Geul Yeh
- Abstract summary: Building a model to predict photovoltaic (PV) power generation allows decision-makers to hedge energy shortages.
The solar power output is time-series data dependent on many factors, such as irradiance and weather.
A machine learning framework for 1-hour ahead solar power prediction is developed in this paper based on the historical data.
- Score: 1.8960797847221296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using solar power in the process industry can reduce greenhouse gas emissions
and make the production process more sustainable. However, the intermittent
nature of solar power renders its usage challenging. Building a model to
predict photovoltaic (PV) power generation allows decision-makers to hedge
energy shortages and further design proper operations. The solar power output
is time-series data dependent on many factors, such as irradiance and weather.
A machine learning framework for 1-hour ahead solar power prediction is
developed in this paper based on the historical data. Our method extends the
input dataset into higher dimensional Chebyshev polynomial space. Then, a
feature selection scheme is developed with constrained linear regression to
construct the predictor for different weather types. Several tests show that
the proposed approach yields lower mean squared error than classical machine
learning methods, such as support vector machine (SVM), random forest (RF), and
gradient boosting decision tree (GBDT).
Related papers
- Solarcast-ML: Per Node GraphCast Extension for Solar Energy Production [0.0]
This project presents an extension to the GraphCast model, a state-of-the-art graph neural network (GNN) for global weather forecasting, by integrating solar energy production forecasting capabilities.
The proposed approach leverages the weather forecasts generated by GraphCast and trains a neural network model to predict the ratio of actual solar output to potential solar output based on various weather conditions.
The results demonstrate the model's effectiveness in accurately predicting solar radiation, with its convergence behavior, decreasing training loss, and accurate prediction of solar radiation patterns.
arXiv Detail & Related papers (2024-06-19T13:47:05Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
We employ a suite of machine learning strategies to evaluate the predictive potential of a new data product for a forecast of post-solar flare SEP events.
Despite the augmented volume of data, the prediction accuracy reaches 0.7 +- 0.1, which aligns with but does not exceed these published benchmarks.
arXiv Detail & Related papers (2024-03-04T23:12:17Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Solar Power Prediction Using Machine Learning [0.0]
This paper presents a machine learning-based approach for predicting solar power generation with high accuracy using a 99% AUC metric.
The approach includes data collection, pre-processing, feature selection, model selection, training, evaluation, and deployment.
The trained machine learning models are then deployed in a production environment, where they can be used to make real-time predictions about solar power generation.
arXiv Detail & Related papers (2023-03-11T06:31:46Z) - Data-driven soiling detection in PV modules [58.6906336996604]
We study the problem of estimating the soiling ratio in photo-voltaic (PV) modules.
A key advantage of our algorithms is that they estimate soiling, without needing to train on labelled data.
Our experimental evaluation shows that we significantly outperform current state-of-the-art methods for estimating soiling ratio.
arXiv Detail & Related papers (2023-01-30T14:35:47Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
We develop a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning.
Our model estimates a location's future solar irradiance based on satellite observations.
We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites.
arXiv Detail & Related papers (2021-12-28T03:13:44Z) - Deep generative modeling for probabilistic forecasting in power systems [34.70329820717658]
This study uses a recent deep learning technique, the normalizing flows, to produce accurate probabilistic forecasts.
We show that our methodology is competitive with other state-of-the-art deep learning generative models.
arXiv Detail & Related papers (2021-06-17T10:41:57Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
We report daily prediction of solar energy by exploiting the strength of machine learning techniques.
Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented.
It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes.
arXiv Detail & Related papers (2020-10-25T17:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.