Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM
and Dynamic Behavioral Models
- URL: http://arxiv.org/abs/2005.12270v1
- Date: Sun, 24 May 2020 10:43:55 GMT
- Title: Forecasting the Spread of Covid-19 Under Control Scenarios Using LSTM
and Dynamic Behavioral Models
- Authors: Seid Miad Zandavi, Taha Hossein Rashidi, Fatemeh Vafaee
- Abstract summary: This study proposes a novel hybrid model which combines a Long short-term memory (LSTM) artificial recurrent neural network with dynamic behavioral models.
The proposed model considers the effect of multiple factors to enhance the accuracy in predicting the number of cases and deaths across the top ten most-affected countries and Australia.
- Score: 2.11622808613962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To accurately predict the regional spread of Covid-19 infection, this study
proposes a novel hybrid model which combines a Long short-term memory (LSTM)
artificial recurrent neural network with dynamic behavioral models. Several
factors and control strategies affect the virus spread, and the uncertainty
arisen from confounding variables underlying the spread of the Covid-19
infection is substantial. The proposed model considers the effect of multiple
factors to enhance the accuracy in predicting the number of cases and deaths
across the top ten most-affected countries and Australia. The results show that
the proposed model closely replicates test data. It not only provides accurate
predictions but also estimates the daily behavior of the system under
uncertainty. The hybrid model outperforms the LSTM model accounting for limited
available data. The parameters of the hybrid models were optimized using a
genetic algorithm for each country to improve the prediction power while
considering regional properties. Since the proposed model can accurately
predict Covid-19 spread under consideration of containment policies, is capable
of being used for policy assessment, planning and decision-making.
Related papers
- CEL: A Continual Learning Model for Disease Outbreak Prediction by
Leveraging Domain Adaptation via Elastic Weight Consolidation [4.693707128262634]
This study introduces a novel CEL model for continual learning by leveraging domain adaptation via Elastic Weight Consolidation (EWC)
CEL's robustness and reliability are underscored by its minimal 65% forgetting rate and 18% higher memory stability compared to existing benchmark studies.
arXiv Detail & Related papers (2024-01-17T03:26:04Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - An Interpretable Hybrid Predictive Model of COVID-19 Cases using
Autoregressive Model and LSTM [3.7555792840171787]
We propose a novel hybrid model in which the interpretability of the Autoregressive model (AR) and the predictive power of the long short-term memory neural networks (LSTM) join forces.
Our study provides a new and promising direction for building effective and interpretable data-driven models.
arXiv Detail & Related papers (2022-11-14T17:55:43Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Comparison of Traditional and Hybrid Time Series Models for Forecasting
COVID-19 Cases [0.5849513679510832]
The coronavirus outbreak of December 2019 has already infected millions all over the world and continues to spread on.
Just when the curve of the outbreak had started to flatten, many countries have again started to witness a rise in cases.
A thorough analysis of time-series forecasting models is therefore required to equip state authorities and health officials with immediate strategies for future times.
arXiv Detail & Related papers (2021-05-05T14:56:27Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting [10.052302234274256]
We design and analysis of deep learning-based models for COVID-19 forecasting.
We consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions.
We propose clustering-based training for high-temporal forecasting.
arXiv Detail & Related papers (2020-10-27T17:52:02Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Adaptive County Level COVID-19 Forecast Models: Analysis and Improvement [1.8899300124593645]
We adapt the state and county level model, TDEFSI-LONLY, to national and county level COVID-19 data.
We show that this model poorly forecasts the current pandemic.
We propose an alternate forecast model, it County Level Epidemiological Inference Recurrent Network (alg) that trains an LSTM backbone on national confirmed cases to learn a low dimensional time pattern.
arXiv Detail & Related papers (2020-06-16T17:20:54Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.