Towards Efficient Scheduling of Federated Mobile Devices under
Computational and Statistical Heterogeneity
- URL: http://arxiv.org/abs/2005.12326v2
- Date: Tue, 15 Sep 2020 18:12:30 GMT
- Title: Towards Efficient Scheduling of Federated Mobile Devices under
Computational and Statistical Heterogeneity
- Authors: Cong Wang, Yuanyuan Yang and Pengzhan Zhou
- Abstract summary: This paper studies the implementation of distributed learning on mobile devices.
We use data as a tuning knob and propose two efficient-time algorithms to schedule different workloads.
Compared with the common benchmarks, the proposed algorithms achieve 2-100x speedup-wise, 2-7% accuracy gain and convergence rate by more than 100% on CIFAR10.
- Score: 16.069182241512266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Originated from distributed learning, federated learning enables
privacy-preserved collaboration on a new abstracted level by sharing the model
parameters only. While the current research mainly focuses on optimizing
learning algorithms and minimizing communication overhead left by distributed
learning, there is still a considerable gap when it comes to the real
implementation on mobile devices. In this paper, we start with an empirical
experiment to demonstrate computation heterogeneity is a more pronounced
bottleneck than communication on the current generation of battery-powered
mobile devices, and the existing methods are haunted by mobile stragglers.
Further, non-identically distributed data across the mobile users makes the
selection of participants critical to the accuracy and convergence. To tackle
the computational and statistical heterogeneity, we utilize data as a tuning
knob and propose two efficient polynomial-time algorithms to schedule different
workloads on various mobile devices, when data is identically or
non-identically distributed. For identically distributed data, we combine
partitioning and linear bottleneck assignment to achieve near-optimal training
time without accuracy loss. For non-identically distributed data, we convert it
into an average cost minimization problem and propose a greedy algorithm to
find a reasonable balance between computation time and accuracy. We also
establish an offline profiler to quantify the runtime behavior of different
devices, which serves as the input to the scheduling algorithms. We conduct
extensive experiments on a mobile testbed with two datasets and up to 20
devices. Compared with the common benchmarks, the proposed algorithms achieve
2-100x speedup epoch-wise, 2-7% accuracy gain and boost the convergence rate by
more than 100% on CIFAR10.
Related papers
- Enhancing Federated Learning Convergence with Dynamic Data Queue and Data Entropy-driven Participant Selection [13.825031686864559]
Federated Learning (FL) is a decentralized approach for collaborative model training on edge devices.
We present a method to improve convergence in FL by creating a global subset of data on the server and dynamically distributing it across devices.
Our approach results in a substantial accuracy boost of approximately 5% for the MNIST dataset, around 18% for CIFAR-10, and 20% for CIFAR-100 with a 10% global subset of data, outperforming the state-of-the-art (SOTA) aggregation algorithms.
arXiv Detail & Related papers (2024-10-23T11:47:04Z) - Asynchronous Local Computations in Distributed Bayesian Learning [8.516532665507835]
We propose gossip-based communication to leverage fast computations and reduce communication overhead simultaneously.
We observe faster initial convergence and improved performance accuracy, especially in the low data range.
We achieve on average 78% and over 90% classification accuracy respectively on the Gamma Telescope and mHealth data sets from the UCI ML repository.
arXiv Detail & Related papers (2023-11-06T20:11:41Z) - DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency
for Federated Learning with Static and Streaming Dataset [23.11152686493894]
Federated Learning (FL) is a distributed learning paradigm that can coordinate heterogeneous edge devices to perform model training without sharing private data.
This paper introduces novel analytical models and optimization algorithms that leverage the interplay between batch size and aggregation frequency to navigate the trade-offs among convergence, cost, and completion time for dynamic FL training.
arXiv Detail & Related papers (2023-10-20T08:36:12Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
A swarm of intelligent wireless devices train a shared neural network model with the help of a drone.
The proposed framework achieves a significant speedup in training, leading to an average 24% and 87% saving in the drone hovering time.
arXiv Detail & Related papers (2023-03-03T23:46:25Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time learning (FL) is a useful tool in distributed machine learning that utilizes users' local datasets in a privacy-preserving manner.
In this paper, we provide a novel convergence analysis non-efficient convergence bound algorithm.
We also develop a new selection and power allocation algorithm that minimizes a function of the convergence bound and the average communication under a power constraint.
arXiv Detail & Related papers (2022-01-19T23:25:24Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
We will mainly focus on collaborative training across wireless devices.
Many distributed optimization algorithms have been developed over the last decades.
They provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local.
arXiv Detail & Related papers (2021-12-07T20:15:39Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.