論文の概要: Bayesian Stress Testing of Models in a Classification Hierarchy
- arxiv url: http://arxiv.org/abs/2005.12327v1
- Date: Mon, 25 May 2020 18:22:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 05:21:02.372201
- Title: Bayesian Stress Testing of Models in a Classification Hierarchy
- Title(参考訳): 階層分類におけるモデルのベイズ応力試験
- Authors: Bashar Awwad Shiekh Hasan and Kate Kelly
- Abstract要約: 現実のアプリケーションで機械学習ソリューションを構築するには、しばしば、問題を様々な複雑さの複数のモデルに分解する。
このような階層内のモデル間の相互作用をモデル化するためのベイズ的枠組みを提案する。
我々は、このフレームワークが全体的なソリューションのストレステストを容易にし、アクティブなデプロイ前に期待されるパフォーマンスをより信頼できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building a machine learning solution in real-life applications often involves
the decomposition of the problem into multiple models of various complexity.
This has advantages in terms of overall performance, better interpretability of
the outcomes, and easier model maintenance. In this work we propose a Bayesian
framework to model the interaction amongst models in such a hierarchy. We show
that the framework can facilitate stress testing of the overall solution,
giving more confidence in its expected performance prior to active deployment.
Finally, we test the proposed framework on a toy problem and financial fraud
detection dataset to demonstrate how it can be applied for any machine learning
based solution, regardless of the underlying modelling required.
- Abstract(参考訳): 現実のアプリケーションで機械学習ソリューションを構築するには、しばしば問題を様々な複雑さの複数のモデルに分解する。
これには全体的なパフォーマンス、結果の解釈性の向上、モデルのメンテナンスが容易な点がある。
本研究では,そのような階層内のモデル間の相互作用をモデル化するベイズ的枠組みを提案する。
フレームワークは、全体的なソリューションのストレステストを容易にし、アクティブなデプロイ前に期待されるパフォーマンスをより信頼できることを示す。
最後に,提案フレームワークをトイ問題と金融不正検出データセット上でテストし,基盤となるモデリングによらず,どのような機械学習ベースのソリューションにも適用できることを示す。
関連論文リスト
- On the KL-Divergence-based Robust Satisficing Model [2.425685918104288]
頑丈さを満足させる枠組みは 学界から注目を集めています
本稿では,解析的解釈,多様な性能保証,効率的で安定した数値法,収束解析,階層型データ構造に適した拡張について述べる。
我々は、最先端のベンチマークと比較して、モデルの性能が優れていることを実証する。
論文 参考訳(メタデータ) (2024-08-17T10:05:05Z) - Two-Stage Surrogate Modeling for Data-Driven Design Optimization with
Application to Composite Microstructure Generation [1.912429179274357]
本稿では,科学・工学分野における逆問題に対処する2段階の機械学習に基づく代理モデリングフレームワークを提案する。
最初の段階では、"Learner"と呼ばれる機械学習モデルは、予測出力が望ましい結果と密接に一致している入力デザイン空間内の候補の限られたセットを特定する。
第2段では、第1段で生成された縮小候補空間を評価するために、「評価器」として機能する別の代理モデルを用いる。
論文 参考訳(メタデータ) (2024-01-04T00:25:12Z) - TSPP: A Unified Benchmarking Tool for Time-series Forecasting [3.5415344166235534]
本稿では,時系列予測モデルの開発に係わる重要なモデリングと機械学習の決定を明らかにする,統一的なベンチマークフレームワークを提案する。
このフレームワークは、モデルとデータセットのシームレスな統合を促進し、実践者と研究者の両方が開発作業を支援する。
このフレームワーク内で最近提案されたモデルをベンチマークし、最小限の努力で注意深く実装されたディープラーニングモデルは、勾配決定木に匹敵する可能性があることを実証した。
論文 参考訳(メタデータ) (2023-12-28T16:23:58Z) - Leveraging World Model Disentanglement in Value-Based Multi-Agent
Reinforcement Learning [18.651307543537655]
本稿では,Distangled World Modelを用いた新しいモデルベースマルチエージェント強化学習手法であるValue Decomposition Frameworkを提案する。
本研究では,本手法が高サンプリング効率を実現し,敵軍を撃破する性能が他のベースラインよりも優れていることを示すために,簡単な,ハード,スーパーハードのStarCraft IIマイクロマネジメントの課題について実験的に検討した。
論文 参考訳(メタデータ) (2023-09-08T22:12:43Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
モデルに基づく強化学習における一般的な実践は、エージェントの環境のあらゆる側面をモデル化するモデルを学ぶことである。
このようなモデルは、生涯にわたる強化学習シナリオにおいて、スケーラブルで堅牢な計画を実行するのに特に適していない、と我々は主張する。
我々は,「最小値部分モデル」と呼ぶ,環境の関連する側面のみをモデル化する新しい種類のモデルを提案する。
論文 参考訳(メタデータ) (2023-01-24T16:40:01Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - A general framework for modeling and dynamic simulation of multibody
systems using factor graphs [0.8701566919381223]
本稿では,多体系の運動学的および動的問題を解くために,因子グラフ理論に基づく新しい汎用フレームワークを提案する。
独立座標と依存座標の両方を用いて多体系をモデル化・シミュレートするための因子グラフの構築方法について述べる。
提案されたフレームワークは広範なシミュレーションでテストされ、商用のマルチボディソフトウェアに対して検証されている。
論文 参考訳(メタデータ) (2021-01-08T06:45:45Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。