論文の概要: Leveraging World Model Disentanglement in Value-Based Multi-Agent
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2309.04615v1
- Date: Fri, 8 Sep 2023 22:12:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 17:28:16.923973
- Title: Leveraging World Model Disentanglement in Value-Based Multi-Agent
Reinforcement Learning
- Title(参考訳): 価値ベースマルチエージェント強化学習における世界モデル絡み合いの活用
- Authors: Zhizun Wang and David Meger
- Abstract要約: 本稿では,Distangled World Modelを用いた新しいモデルベースマルチエージェント強化学習手法であるValue Decomposition Frameworkを提案する。
本研究では,本手法が高サンプリング効率を実現し,敵軍を撃破する性能が他のベースラインよりも優れていることを示すために,簡単な,ハード,スーパーハードのStarCraft IIマイクロマネジメントの課題について実験的に検討した。
- 参考スコア(独自算出の注目度): 18.651307543537655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel model-based multi-agent reinforcement
learning approach named Value Decomposition Framework with Disentangled World
Model to address the challenge of achieving a common goal of multiple agents
interacting in the same environment with reduced sample complexity. Due to
scalability and non-stationarity problems posed by multi-agent systems,
model-free methods rely on a considerable number of samples for training. In
contrast, we use a modularized world model, composed of action-conditioned,
action-free, and static branches, to unravel the environment dynamics and
produce imagined outcomes based on past experience, without sampling directly
from the real environment. We employ variational auto-encoders and variational
graph auto-encoders to learn the latent representations for the world model,
which is merged with a value-based framework to predict the joint action-value
function and optimize the overall training objective. We present experimental
results in Easy, Hard, and Super-Hard StarCraft II micro-management challenges
to demonstrate that our method achieves high sample efficiency and exhibits
superior performance in defeating the enemy armies compared to other baselines.
- Abstract(参考訳): 本稿では,複数のエージェントが同一環境内で対話する共通目標を達成するための,サンプル複雑性の低減という課題を解決するために,異種世界モデルを用いた,新しいモデルベースマルチエージェント強化学習手法であるvalue decomposition frameworkを提案する。
マルチエージェントシステムによって生じるスケーラビリティと非定常性の問題により、モデルフリーな手法はトレーニングのためにかなりの数のサンプルに依存している。
対照的に、動作条件付き、アクションフリー、静的ブランチで構成されたモジュール化された世界モデルを用いて、実環境から直接サンプリングすることなく、過去の経験に基づいて環境ダイナミクスを解き放ち、想像結果を生成する。
本研究では,多変量オートエンコーダと変分グラフオートエンコーダを用いて世界モデルの潜在表現を学習する。
本手法は, 簡単な, 硬い, 超硬いstarcraft iiのマイクロマネージメント課題に対して, 実験結果を示し, 高いサンプル効率を達成し, 他のベースラインと比較して敵軍を破る上で優れた性能を示す。
関連論文リスト
- Decentralized Transformers with Centralized Aggregation are Sample-Efficient Multi-Agent World Models [106.94827590977337]
本稿では,分散化された局所力学を拡張性のために学習するマルチエージェントRL(MARL)の新たな世界モデルを提案する。
また、集中表現アグリゲーションを可能にする効果的なソリューションとしてPerceiver Transformerを導入する。
Starcraft Multi-Agent Challenge (SMAC) の結果は、サンプル効率と全体的な性能の両方において、強力なモデルフリーアプローチと既存のモデルベース手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-06-22T12:40:03Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
近年,モデルに基づく強化学習アルゴリズムは視覚入力環境において顕著な有効性を示している。
本稿では,強力なモデリングと生成機能を組み合わせた効率的な世界モデルアーキテクチャであるTransformer-based wORld Model (STORM)を紹介する。
Stormは、Atari 100$kベンチマークで平均126.7%の人的パフォーマンスを達成し、最先端のメソッドの中で新しい記録を樹立した。
論文 参考訳(メタデータ) (2023-10-14T16:42:02Z) - HarmonyDream: Task Harmonization Inside World Models [93.07314830304193]
モデルベース強化学習(MBRL)は、サンプル効率の学習を約束する。
本稿では,タスク調和性を維持するために損失係数を自動的に調整する,シンプルで効果的なアプローチであるHarmonyDreamを提案する。
論文 参考訳(メタデータ) (2023-09-30T11:38:13Z) - Mingling Foresight with Imagination: Model-Based Cooperative Multi-Agent
Reinforcement Learning [15.12491397254381]
本稿では,暗黙的なモデルに基づくマルチエージェント強化学習手法を提案する。
この方法では,エージェントは学習した仮想環境と対話し,将来の予測状態に応じて現在の状態値を評価することができる。
論文 参考訳(メタデータ) (2022-04-20T12:16:27Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Multiscale Generative Models: Improving Performance of a Generative
Model Using Feedback from Other Dependent Generative Models [10.053377705165786]
実世界の相互作用を反映した相互作用生成モデル(GAN)の構築に向けた第一歩を踏み出す。
我々は,複数の低レベル GAN の出力に高レベル GAN を条件付けした階層的なセットアップを構築し,解析する。
本稿では,より高レベルなGANからのフィードバックを用いて,低レベルなGANの性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2022-01-24T13:05:56Z) - HyperTransformer: Model Generation for Supervised and Semi-Supervised
Few-Shot Learning [14.412066456583917]
本稿では,支援サンプルから直接畳み込みニューラルネットワーク(CNN)の重みを生成する,少数ショット学習のためのトランスフォーマーベースモデルを提案する。
本手法は,タスク非依存の定型埋め込みの学習が最適でない小ターゲットCNNアーキテクチャにおいて,特に有効である。
提案手法は,サポートセット内のラベルなしサンプルを利用した半教師付きシステムに拡張され,さらにショット性能が向上する。
論文 参考訳(メタデータ) (2022-01-11T20:15:35Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
マルチエージェント強化学習(MARL)におけるモデルベース手法について検討する。
AORPO(Adaptive Opponent-wise Rollout Policy)と呼ばれる新しい分散型モデルベースのMARL法を提案する。
論文 参考訳(メタデータ) (2021-05-07T16:20:22Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。