論文の概要: CARPe Posterum: A Convolutional Approach for Real-time Pedestrian Path
Prediction
- arxiv url: http://arxiv.org/abs/2005.12469v3
- Date: Wed, 9 Jun 2021 02:36:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 00:14:49.731288
- Title: CARPe Posterum: A Convolutional Approach for Real-time Pedestrian Path
Prediction
- Title(参考訳): CARPe Posterum:リアルタイム歩行者経路予測のための畳み込みアプローチ
- Authors: Mat\'ias Mendieta and Hamed Tabkhi
- Abstract要約: 本稿では,リアルタイム歩行者経路予測のための畳み込み手法CARPeを提案する。
グラフ同型ネットワークのバリエーションとアジャイルの畳み込みニューラルネットワーク設計を組み合わせて、高速で正確なパス予測アプローチを形成する。
予測速度と予測精度の両面での結果が得られ、現在の最先端手法と比較してFPSを大幅に改善した。
- 参考スコア(独自算出の注目度): 3.883460584034766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian path prediction is an essential topic in computer vision and video
understanding. Having insight into the movement of pedestrians is crucial for
ensuring safe operation in a variety of applications including autonomous
vehicles, social robots, and environmental monitoring. Current works in this
area utilize complex generative or recurrent methods to capture many possible
futures. However, despite the inherent real-time nature of predicting future
paths, little work has been done to explore accurate and computationally
efficient approaches for this task. To this end, we propose a convolutional
approach for real-time pedestrian path prediction, CARPe. It utilizes a
variation of Graph Isomorphism Networks in combination with an agile
convolutional neural network design to form a fast and accurate path prediction
approach. Notable results in both inference speed and prediction accuracy are
achieved, improving FPS considerably in comparison to current state-of-the-art
methods while delivering competitive accuracy on well-known path prediction
datasets.
- Abstract(参考訳): 歩行者の経路予測はコンピュータビジョンとビデオ理解において重要なトピックである。
歩行者の動きに関する洞察を得ることは、自動運転車、ソーシャルロボット、環境モニタリングなど、さまざまなアプリケーションにおいて安全な運転を確保するために不可欠である。
この領域における現在の研究は、複雑な生成的あるいは反復的な手法を用いて、多くの将来を捉えている。
しかしながら、将来の経路を予測する固有のリアルタイム性にもかかわらず、このタスクの正確かつ計算効率の良いアプローチを探求する作業はほとんど行われていない。
そこで本研究では,リアルタイム歩行者経路予測のための畳み込み手法CARPeを提案する。
グラフ同型ネットワークのバリエーションと、アジャイル畳み込みニューラルネットワークの設計を組み合わせて、高速で正確なパス予測アプローチを形成する。
推定速度と予測精度の両方の注目すべき結果を達成し、既知のパス予測データセットで競合精度を提供しながら、現在の最先端手法と比べてfpsを大幅に改善した。
関連論文リスト
- Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
軌道予測は、自動運転車の周囲の障害物の動きを記述する。
本稿では,自律走行車における軌道予測におけるアウト・オブ・ディストリビューションのリアルタイム認識を確立することを目的とする。
提案手法は軽量であり, 軌道予測推定時にいつでもアウト・オブ・ディストリビューションの発生を処理できる。
論文 参考訳(メタデータ) (2024-09-25T18:43:58Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
本稿では,データ駆動学習に基づく手法と,自然に着想を得た概念から生成された速度ベクトル場(VVF)を組み合わせた軌道予測手法を提案する。
精度は、正確な軌道予測のための過去の観測の長い歴史の要求を緩和する観測窓の減少と一致している。
論文 参考訳(メタデータ) (2023-09-19T22:14:52Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Graph-based Spatial Transformer with Memory Replay for Multi-future
Pedestrian Trajectory Prediction [13.466380808630188]
歴史的軌跡に基づく複数経路の予測モデルを提案する。
提案手法は,空間情報を利用するとともに,時間的に矛盾した軌道を補正することができる。
実験により,提案手法は,複数未来予測の最先端性能と,単一未来予測の競合結果が得られることを示した。
論文 参考訳(メタデータ) (2022-06-12T10:25:12Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
本稿では,グラフのエッジに注目重みを割り当てることで,歩行者間の暗黙的相互作用に関する情報を集約する,GCNNに基づく新しいアプローチであるAttentional-GCNNを提案する。
提案手法は,10%平均変位誤差 (ADE) と12%最終変位誤差 (FDE) を高速な推論速度で向上することを示す。
論文 参考訳(メタデータ) (2020-11-23T03:13:26Z) - Temporally-Continuous Probabilistic Prediction using Polynomial
Trajectory Parameterization [12.896275507449936]
アクターの動作予測に一般的に使用される表現は、各アクターが個別の将来の時間ポイントで行う一連のウェイポイントである。
このアプローチは単純で柔軟であるが、中間時間ステップで非現実的な高次微分や近似誤差を示すことができる。
本稿では,軌道パラメータ化に基づく時間的連続軌道予測のための簡易かつ汎用的な表現を提案する。
論文 参考訳(メタデータ) (2020-11-01T01:51:44Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。