論文の概要: Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2409.17277v1
- Date: Wed, 25 Sep 2024 18:43:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-30 12:52:34.753696
- Title: Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles
- Title(参考訳): 自動車の軌道予測におけるアウトオブディストリビューションのリアルタイム認識の構築
- Authors: Tongfei, Guo, Taposh Banerjee, Rui Liu, Lili Su,
- Abstract要約: 軌道予測は、自動運転車の周囲の障害物の動きを記述する。
本稿では,自律走行車における軌道予測におけるアウト・オブ・ディストリビューションのリアルタイム認識を確立することを目的とする。
提案手法は軽量であり, 軌道予測推定時にいつでもアウト・オブ・ディストリビューションの発生を処理できる。
- 参考スコア(独自算出の注目度): 8.398221841050349
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction describes the motions of surrounding moving obstacles for an autonomous vehicle; it plays a crucial role in enabling timely decision-making, such as collision avoidance and trajectory replanning. Accurate trajectory planning is the key to reliable vehicle deployments in open-world environment, where unstructured obstacles bring in uncertainties that are impossible to fully capture by training data. For traditional machine learning tasks, such uncertainties are often addressed reasonably well via methods such as continual learning. On the one hand, naively applying those methods to trajectory prediction can result in continuous data collection and frequent model updates, which can be resource-intensive. On the other hand, the predicted trajectories can be far away from the true trajectories, leading to unsafe decision-making. In this paper, we aim to establish real-time awareness of out-of-distribution in trajectory prediction for autonomous vehicles. We focus on the challenging and practically relevant setting where the out-of-distribution is deceptive, that is, the one not easily detectable by human intuition. Drawing on the well-established techniques of sequential analysis, we build real-time awareness of out-of-distribution by monitoring prediction errors using the quickest change point detection (QCD). Our solutions are lightweight and can handle the occurrence of out-of-distribution at any time during trajectory prediction inference. Experimental results on multiple real-world datasets using a benchmark trajectory prediction model demonstrate the effectiveness of our methods.
- Abstract(参考訳): 軌道予測は、自動運転車の周囲の障害物の動きを記述しており、衝突回避や軌道変更といったタイムリーな意思決定を可能にする上で重要な役割を果たしている。
正確な軌道計画がオープンワールド環境における信頼性の高い車両配備の鍵であり、非構造的障害がトレーニングデータによって完全な捕獲が不可能な不確実性をもたらす。
従来の機械学習タスクでは、このような不確実性は連続学習のような手法によって適切に対処されることが多い。
一方、これらの手法を軌道予測に適用すると、連続的なデータ収集と頻繁なモデル更新が発生し、リソース集約化がもたらされる。
一方、予測された軌道は真の軌道から遠く離れており、安全でない意思決定につながる。
本稿では,自律走行車における軌道予測におけるアウト・オブ・ディストリビューションのリアルタイム認識を確立することを目的とする。
我々は,人間の直感によって容易には検出できないような,流通停止が欺く難易度と実践的関連性に焦点をあてる。
逐次解析の確立した技術に基づいて,最短変化点検出(QCD)を用いた予測誤差の監視により,配当のリアルタイム認識を構築する。
提案手法は軽量であり, 軌道予測推定時にいつでもアウト・オブ・ディストリビューションの発生を処理できる。
ベンチマーク軌跡予測モデルを用いた実世界の複数のデータセットの実験結果から,本手法の有効性が示された。
関連論文リスト
- Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
クラスに依存しない動き予測法は点雲全体の動きを直接予測する。
既存のほとんどのメソッドは、完全に教師付き学習に依存しているが、ポイントクラウドデータの手作業によるラベル付けは、手間と時間を要する。
3つの簡単な空間的・時間的正則化損失を導入し,自己指導型学習プロセスの効率化を図る。
論文 参考訳(メタデータ) (2024-03-20T02:58:45Z) - EANet: Expert Attention Network for Online Trajectory Prediction [5.600280639034753]
Expert Attention Networkは、軌道予測のための完全なオンライン学習フレームワークである。
我々は,ネットワーク層の深さの異なる重みを調整し,勾配問題によるモデル更新が遅いことを回避し,専門家の注意を喚起する。
さらに,シナリオ変化に敏感な短期動作トレンドカーネル関数を提案する。
論文 参考訳(メタデータ) (2023-09-11T07:09:40Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
軌道予測は、自動運転ソフトウェアスタックの重要なコンポーネントの1つである。
本稿では,自己認識軌道予測手法を提案する。
提案手法は, 自己認識, メモリフットプリント, リアルタイム性能で良好に動作した。
論文 参考訳(メタデータ) (2023-05-16T03:53:23Z) - Robustness Benchmark of Road User Trajectory Prediction Models for
Automated Driving [0.0]
車両内のモデル展開中に観測される機能不全をシミュレートする摂動に対して、機械学習モデルをベンチマークする。
同様の摂動を持つモデルのトレーニングは、パフォーマンスの劣化を効果的に低減し、エラーは+87.5%まで増加する。
効果的な緩和戦略であるにもかかわらず、トレーニング中の摂動によるデータ拡張は、予期せぬ摂動に対する堅牢性を保証するものではない、と我々は主張する。
論文 参考訳(メタデータ) (2023-04-04T15:47:42Z) - Using Semantic Information for Defining and Detecting OOD Inputs [3.9577682622066264]
アウト・オブ・ディストリビューション(OOD)検出は近年注目されている。
現在の検出器がトレーニングデータセットのバイアスを継承していることを示します。
これにより、現在のOOD検出器はトレーニング分布の外にある入力に不透過であり、同じ意味情報を持つことができる。
我々は,MNISTおよびCOCOデータセットのトレーニングデータから抽出した意味情報に基づいてOOD検出を行う。
論文 参考訳(メタデータ) (2023-02-21T21:31:20Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - How many Observations are Enough? Knowledge Distillation for Trajectory
Forecasting [31.57539055861249]
現在の最先端モデルは、通常、過去の追跡された場所の「歴史」に頼り、将来の位置の妥当なシーケンスを予測する。
我々は,教師ネットワークから学生ネットワークへの知識伝達を可能にする新しい蒸留戦略を考案した。
適切に定義された教師の監督により、学生ネットワークが最先端のアプローチと相容れないように実行できることが示される。
論文 参考訳(メタデータ) (2022-03-09T15:05:39Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - Probabilistic Trajectory Prediction with Structural Constraints [38.90152893402733]
この研究は、環境中の動的物体の運動軌跡を予測する問題に対処する。
最近の動きパターン予測の進歩は、しばしば観察された軌跡から動きパターンを外挿する機械学習技術に依存している。
本稿では,確率論的学習と制約付き軌道最適化を組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-09T03:48:14Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
本稿では,グラフのエッジに注目重みを割り当てることで,歩行者間の暗黙的相互作用に関する情報を集約する,GCNNに基づく新しいアプローチであるAttentional-GCNNを提案する。
提案手法は,10%平均変位誤差 (ADE) と12%最終変位誤差 (FDE) を高速な推論速度で向上することを示す。
論文 参考訳(メタデータ) (2020-11-23T03:13:26Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - The Unsupervised Method of Vessel Movement Trajectory Prediction [1.2617078020344619]
本稿では,船体移動軌跡予測の教師なし手法を提案する。
これは、点間の時間差、試験された点と予測された前方および後方位置の間のスケールした誤差距離、時空間の角度からなる3次元空間におけるデータを表す。
多くの統計的学習法や深層学習法とは異なり、クラスタリングに基づく軌道再構成法は計算コストのかかるモデルトレーニングを必要としない。
論文 参考訳(メタデータ) (2020-07-27T17:45:21Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。