A Feasibility-Preserved Quantum Approximate Solver for the Capacitated Vehicle Routing Problem
- URL: http://arxiv.org/abs/2308.08785v3
- Date: Sun, 21 Apr 2024 05:03:01 GMT
- Title: A Feasibility-Preserved Quantum Approximate Solver for the Capacitated Vehicle Routing Problem
- Authors: Ningyi Xie, Xinwei Lee, Dongsheng Cai, Yoshiyuki Saito, Nobuyoshi Asai, Hoong Chuin Lau,
- Abstract summary: The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO) that arises in various fields including transportation and logistics.
We present a new binary encoding for the CVRP, with an objective function of minimizing the shortest path that bypasses the vehicle capacity constraint of the CVRP.
We discuss the effectiveness of the proposed encoding under the framework of the variant of the Quantum Alternating Operator Ansatz.
- Score: 3.0567007573383678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO) that arises in various fields including transportation and logistics. The CVRP extends from the Vehicle Routing Problem (VRP), aiming to determine the most efficient plan for a fleet of vehicles to deliver goods to a set of customers, subject to the limited carrying capacity of each vehicle. As the number of possible solutions skyrockets when the number of customers increases, finding the optimal solution remains a significant challenge. Recently, the Quantum Approximate Optimization Algorithm (QAOA), a quantum-classical hybrid algorithm, has exhibited enhanced performance in certain combinatorial optimization problems compared to classical heuristics. However, its ability diminishes notably in solving constrained optimization problems including the CVRP. This limitation primarily arises from the typical approach of encoding the given problems as penalty-inclusive binary optimization problems. In this case, the QAOA faces challenges in sampling solutions satisfying all constraints. Addressing this, our work presents a new binary encoding for the CVRP, with an alternative objective function of minimizing the shortest path that bypasses the vehicle capacity constraint of the CVRP. The search space is further restricted by the constraint-preserving mixing operation. We examine and discuss the effectiveness of the proposed encoding under the framework of the variant of the QAOA, Quantum Alternating Operator Ansatz (AOA), through its application to several illustrative examples. Compared to the typical QAOA approach, the proposed method not only preserves the feasibility but also achieves a significant enhancement in the probability of measuring optimal solutions.
Related papers
- Learn to Solve Vehicle Routing Problems ASAP: A Neural Optimization Approach for Time-Constrained Vehicle Routing Problems with Finite Vehicle Fleet [0.0]
We propose an NCO approach to solve a time-constrained capacitated VRP with a finite vehicle fleet size.
The method is able to find adequate and cost-efficient solutions, showing both flexibility and robust generalizations.
arXiv Detail & Related papers (2024-11-07T15:16:36Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
We discuss the Capacitated Vehicle Problem (CVRP) or its reduced variant, the Travelling Salesperson Problem (TSP)
Even with today's most powerful classical algorithms, the CVRP is challenging to solve classically.
Quantum computing may offer a way to improve the time to solution.
arXiv Detail & Related papers (2023-04-19T13:03:50Z) - Light Unbalanced Optimal Transport [69.18220206873772]
Existing solvers are either based on principles or heavy-weighted with complex optimization objectives involving several neural networks.
We show that our solver provides a universal approximation of UEOT solutions and obtains its generalization bounds.
arXiv Detail & Related papers (2023-03-14T15:44:40Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
A novel model is proposed for the coverage and capacity optimization of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) assisted networks.
A loss function-based update strategy is the core point, which is able to calculate weights for both loss functions of coverage and capacity by a min-norm solver at each update.
The numerical results demonstrate that the investigated update strategy outperforms the fixed weight-based MO algorithms.
arXiv Detail & Related papers (2022-04-13T13:52:22Z) - Applying quantum approximate optimization to the heterogeneous vehicle
routing problem [0.7503129292751939]
We investigate the potential use of a quantum computer to find approximate solutions to the heterogeneous vehicle routing problem.
We find that the number of qubits needed for this mapping scales quadratically with the number of customers.
arXiv Detail & Related papers (2021-10-13T15:38:25Z) - Quantum walk-based vehicle routing optimisation [0.0]
This paper demonstrates the applicability of the Quantum Walk-based optimisation algorithm to the Capacitated Vehicle Routing Problem (CVRP)
Efficient algorithms are developedfor the indexing and unindexing of the solution space and for implementing the required alternatingphase-walk unitaries.
Results of numerical simulationdemonstrate that the QWOA is capable of producing convergence to near-optimal solutions for arandomly generated 8 location CVRP.
arXiv Detail & Related papers (2021-09-30T08:04:58Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - A Quantum Annealing Approach for Dynamic Multi-Depot Capacitated Vehicle
Routing Problem [5.057312718525522]
This paper presents a quantum computing algorithm that works on the principle of Adiabatic Quantum Computation (AQC)
It has shown significant computational advantages in solving optimization problems such as vehicle routing problems (VRP) when compared to classical algorithms.
This is an NP-hard optimization problem with real-world applications in the fields of transportation, logistics, and supply chain management.
arXiv Detail & Related papers (2020-05-26T01:47:39Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.