A Feasibility-Preserved Quantum Approximate Solver for the Capacitated Vehicle Routing Problem
- URL: http://arxiv.org/abs/2308.08785v3
- Date: Sun, 21 Apr 2024 05:03:01 GMT
- Title: A Feasibility-Preserved Quantum Approximate Solver for the Capacitated Vehicle Routing Problem
- Authors: Ningyi Xie, Xinwei Lee, Dongsheng Cai, Yoshiyuki Saito, Nobuyoshi Asai, Hoong Chuin Lau,
- Abstract summary: The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO) that arises in various fields including transportation and logistics.
We present a new binary encoding for the CVRP, with an objective function of minimizing the shortest path that bypasses the vehicle capacity constraint of the CVRP.
We discuss the effectiveness of the proposed encoding under the framework of the variant of the Quantum Alternating Operator Ansatz.
- Score: 3.0567007573383678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO) that arises in various fields including transportation and logistics. The CVRP extends from the Vehicle Routing Problem (VRP), aiming to determine the most efficient plan for a fleet of vehicles to deliver goods to a set of customers, subject to the limited carrying capacity of each vehicle. As the number of possible solutions skyrockets when the number of customers increases, finding the optimal solution remains a significant challenge. Recently, the Quantum Approximate Optimization Algorithm (QAOA), a quantum-classical hybrid algorithm, has exhibited enhanced performance in certain combinatorial optimization problems compared to classical heuristics. However, its ability diminishes notably in solving constrained optimization problems including the CVRP. This limitation primarily arises from the typical approach of encoding the given problems as penalty-inclusive binary optimization problems. In this case, the QAOA faces challenges in sampling solutions satisfying all constraints. Addressing this, our work presents a new binary encoding for the CVRP, with an alternative objective function of minimizing the shortest path that bypasses the vehicle capacity constraint of the CVRP. The search space is further restricted by the constraint-preserving mixing operation. We examine and discuss the effectiveness of the proposed encoding under the framework of the variant of the QAOA, Quantum Alternating Operator Ansatz (AOA), through its application to several illustrative examples. Compared to the typical QAOA approach, the proposed method not only preserves the feasibility but also achieves a significant enhancement in the probability of measuring optimal solutions.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.