論文の概要: Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks
- arxiv url: http://arxiv.org/abs/2005.12521v1
- Date: Tue, 26 May 2020 05:39:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 00:49:18.197266
- Title: Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks
- Title(参考訳): 非地球ネットワークのための強化学習によるLEO衛星とUAV中継の統合
- Authors: Ju-Hyung Lee, Jihong Park, Mehdi Bennis, and Young-Chai Ko
- Abstract要約: 低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
- 参考スコア(独自算出の注目度): 51.05735925326235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A mega-constellation of low-earth orbit (LEO) satellites has the potential to
enable long-range communication with low latency. Integrating this with
burgeoning unmanned aerial vehicle (UAV) assisted non-terrestrial networks will
be a disruptive solution for beyond 5G systems provisioning large scale
three-dimensional connectivity. In this article, we study the problem of
forwarding packets between two faraway ground terminals, through an LEO
satellite selected from an orbiting constellation and a mobile high-altitude
platform (HAP) such as a fixed-wing UAV. To maximize the end-to-end data rate,
the satellite association and HAP location should be optimized, which is
challenging due to a huge number of orbiting satellites and the resulting
time-varying network topology. We tackle this problem using deep reinforcement
learning (DRL) with a novel action dimension reduction technique. Simulation
results corroborate that our proposed method achieves up to 5.74x higher
average data rate compared to a direct communication baseline without SAT and
HAP.
- Abstract(参考訳): 低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
これを無人航空機(UAV)と統合することは、大規模な3次元接続を提供する5Gシステムを超えて、破壊的な解決策となるだろう。
本稿では、軌道星座から選択されたLEO衛星と固定翼UAVなどの移動高高度プラットフォーム(HAP)を介して、2つの遠地端末間のパケット転送の問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAP位置を最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
シミュレーションの結果,SATとHAPのない直接通信ベースラインと比較して,提案手法が平均データレートを最大5.74倍に向上することがわかった。
関連論文リスト
- A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
本稿では,衛星が大規模機械学習(ML)タスクを効率的に実行できるようにする新しいFL-SECフレームワークを提案する。
主な構成要素は、余分な衛星画像を特定して排除するディビジョン・アンド・コンカーによるパーソナライズドラーニングと、軌道毎に集約された「軌道モデル」を生成し、地上局に送る前に再訓練する軌道モデル再訓練である。
我々のアプローチではFL収束時間が30倍近く減少し、衛星のエネルギー消費は1.38ワットまで減少し、例外的な精度は96%まで維持される。
論文 参考訳(メタデータ) (2024-01-28T02:01:26Z) - Communication-Efficient Federated Learning for LEO Satellite Networks
Integrated with HAPs Using Hybrid NOMA-OFDM [1.3121410433987561]
本稿では,LEO衛星に適した新しいFL-SatComアプローチであるNomaFedHAPを提案する。
NomaFedHAPは高高度プラットフォーム(HAP)を分散パラメータサーバ(PS)として利用し、衛星の可視性を高める。
近距離シェルにおける衛星の停止確率とシステム全体の停止確率のクローズドな表現を導出する。
論文 参考訳(メタデータ) (2024-01-01T07:07:27Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
ローアース・オービット(LEO)衛星星座は近年、急速に展開している。
このような応用に機械学習(ML)を適用するには、画像などの衛星データを地上局(GS)にダウンロードする従来の方法は望ましいものではない。
既存のFLソリューションは、過剰収束遅延や信頼できない無線チャネルといった大きな課題のために、そのようなLEOコンステレーションのシナリオには適さないことを示す。
論文 参考訳(メタデータ) (2022-05-15T08:22:52Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
創発的ランダムアクセスチャネルプロトコル(eRACH)と呼ばれるLEO SATネットワークのための新しい許可なしランダムアクセスソリューションを提案する。
eRACHは、非定常ネットワーク環境との相互作用によって生じるモデルフリーなアプローチである。
RACHと比較して,提案するeRACHは平均ネットワークスループットが54.6%向上することを示す。
論文 参考訳(メタデータ) (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Integrating LEO Satellites and Multi-UAV Reinforcement Learning for
Hybrid FSO/RF Non-Terrestrial Networks [55.776497048509185]
低高度地球軌道衛星(SAT)と無人航空機(UAV)のメガコンステレーションは、第5世代(5G)を超える高速・長距離通信の実現を約束している。
我々は、ミリ波(mmWave)無線周波数(RF)または自由空間光(FSO)リンクを用いて、SATとUAVリレーを介して2つの長距離地上端末間のパケット転送の問題を検討する。
論文 参考訳(メタデータ) (2020-10-20T09:07:10Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5Gネットワークは、拡張モバイルブロードバンド(eMBB)、超信頼性低遅延通信(URLLC)、大規模機械型通信(mMTC)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVはコスト効率のよい航空プラットフォームとして利用でき、地上の利用者に高い高度と3D空間での操作性を利用して通信サービスを強化することができる。
一方,UAVと地上ユーザの両方に同時に通信サービスを提供することは,ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から,新たな課題を提起する。
論文 参考訳(メタデータ) (2020-10-19T08:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。