論文の概要: A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence
- arxiv url: http://arxiv.org/abs/2010.09317v2
- Date: Sat, 12 Jun 2021 11:13:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 21:41:36.274145
- Title: A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence
- Title(参考訳): uavを用いた5g・beyondネットワークの包括的概要:通信からセンシング・インテリジェンスへ
- Authors: Qingqing Wu, Jie Xu, Yong Zeng, Derrick Wing Kwan Ng, Naofal
Al-Dhahir, Robert Schober, A. Lee Swindlehurst
- Abstract要約: 5Gネットワークは、拡張モバイルブロードバンド(eMBB)、超信頼性低遅延通信(URLLC)、大規模機械型通信(mMTC)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVはコスト効率のよい航空プラットフォームとして利用でき、地上の利用者に高い高度と3D空間での操作性を利用して通信サービスを強化することができる。
一方,UAVと地上ユーザの両方に同時に通信サービスを提供することは,ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から,新たな課題を提起する。
- 参考スコア(独自算出の注目度): 152.89360859658296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the advancements in cellular technologies and the dense deployment of
cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the
fifth-generation (5G) and beyond cellular networks is a promising solution to
achieve safe UAV operation as well as enabling diversified applications with
mission-specific payload data delivery. In particular, 5G networks need to
support three typical usage scenarios, namely, enhanced mobile broadband
(eMBB), ultra-reliable low-latency communications (URLLC), and massive
machine-type communications (mMTC). On the one hand, UAVs can be leveraged as
cost-effective aerial platforms to provide ground users with enhanced
communication services by exploiting their high cruising altitude and
controllable maneuverability in three-dimensional (3D) space. On the other
hand, providing such communication services simultaneously for both UAV and
ground users poses new challenges due to the need for ubiquitous 3D signal
coverage as well as the strong air-ground network interference. Besides the
requirement of high-performance wireless communications, the ability to support
effective and efficient sensing as well as network intelligence is also
essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting
aerial and ground users. In this paper, we provide a comprehensive overview of
the latest research efforts on integrating UAVs into cellular networks, with an
emphasis on how to exploit advanced techniques (e.g., intelligent reflecting
surface, short packet transmission, energy harvesting, joint communication and
radar sensing, and edge intelligence) to meet the diversified service
requirements of next-generation wireless systems. Moreover, we highlight
important directions for further investigation in future work.
- Abstract(参考訳): セルラー技術の進歩とセルラーインフラの高度展開により、無人航空機(UAV)を第5世代(5G)とセルラーネットワークを超えて統合することは、安全なUAV運用を実現するとともに、ミッション固有のペイロードデータ配信による多様なアプリケーションを実現するための有望な解決策である。
特に、5gネットワークは、モバイルブロードバンド(embb)、ultra-reliable low-latency communications(urllc)、massive machine-type communications(mmtc)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVは高高度と3次元(3D)空間での操作性を利用して地上の利用者に高度な通信サービスを提供するために、コスト効率のよい航空プラットフォームとして活用することができる。
一方、UAVと地上ユーザーの両方に同時に通信サービスを提供することは、ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から、新たな課題となる。
高性能な無線通信の要件に加えて、効果的で効率的なセンシングとネットワークインテリジェンスをサポートする能力は、空中と地上のユーザを共存させる5g以上の異種無線ネットワークにも不可欠である。
本稿では,UAVをセルネットワークに組み込むための最新の研究成果の概要を概説し,次世代無線システムの多様なサービス要件を満たすために,高度な技術(インテリジェント反射面,短パケット伝送,エネルギー回収,共同通信およびレーダセンシング,エッジインテリジェンス)を活用する方法について述べる。
さらに,今後の研究に向けた重要な方向性を強調した。
関連論文リスト
- The Future of Aerial Communications: A Survey of IRS-Enhanced UAV Communication Technologies [2.8002534443865987]
Intelligent Reflecting Surfaces (IRS) と Unmanned Aerial Vehicles (UAVs) の出現は、無線通信分野における新たなベンチマークを設定している。
IRSは電磁波を操作するための画期的な能力を備えており、信号品質、ネットワーク効率、スペクトル利用の大幅な向上のための道を開いた。
UAVは、通信ネットワーク内の動的で汎用的な要素として出現し、従来の固定インフラが不足している地域では、高いモビリティとアクセスとカバー範囲の強化を実現している。
論文 参考訳(メタデータ) (2024-06-02T09:58:53Z) - Deep Reinforcement Learning Based Placement for Integrated Access
Backhauling in UAV-Assisted Wireless Networks [6.895620511689995]
本稿では, リアルタイムにUAV配置を最適化するために, 深部強化学習(DRL)を活用する新しい手法を提案する。
この取り組みの独特な貢献は、地上ユーザーとの堅牢な接続を保証するだけでなく、中央ネットワークインフラストラクチャとのシームレスな統合を維持するために、無人でUAVを配置できることにある。
論文 参考訳(メタデータ) (2023-12-21T19:02:27Z) - UAV Based 5G Network: A Practical Survey Study [0.0]
無人航空機(UAV)は、新しい無線ネットワークの開発に大きく貢献することが期待されている。
UAVは5Gネットワークの低レイテンシと高速能力を利用して大量のデータをリアルタイムに転送することができる。
論文 参考訳(メタデータ) (2022-12-27T00:34:59Z) - Deep Reinforcement Learning for Combined Coverage and Resource
Allocation in UAV-aided RAN-slicing [1.7214664783818676]
この研究は、UAV-BS(UAV-BS)がネットワークスライシング機能を備えたUAV支援5Gネットワークを提示する。
ネットワークスライシング環境におけるUAV-BSに対するマルチエージェントおよびマルチエージェント深部強化学習の第一応用について紹介する。
提示された戦略のパフォーマンスはテストされ、ベンチマークと比較され、さまざまなシナリオにおいて満足度の高いユーザの割合(少なくとも27%以上)が強調されている。
論文 参考訳(メタデータ) (2022-11-15T06:50:00Z) - 5G Network on Wings: A Deep Reinforcement Learning Approach to the
UAV-based Integrated Access and Backhaul [11.197456628712846]
無人航空機(UAV)ベースの航空ネットワークは、高速で柔軟で信頼性の高い無線通信のための有望な代替手段を提供する。
本稿では,静的環境と動的環境の両方において,複数のUAV-BSを制御する方法について検討する。
複数のUAV-BSの3次元配置を協調的に最適化するために,深部強化学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-02-04T07:45:06Z) - Networking of Internet of UAVs: Challenges and Intelligent Approaches [93.94905661009996]
I-UAVネットワークは、QoS(Quality-of-Service)とQoE(Quality-of-Experience)の3つのカテゴリに分類される。
本稿では、これらの課題を詳細に分析し、I-UAVネットワーク問題に取り組むための対応するインテリジェントアプローチについて解説する。
論文 参考訳(メタデータ) (2021-11-13T09:44:43Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - 6G in the Sky: On-Demand Intelligence at the Edge of 3D Networks [60.49776988771734]
6Gは衛星、航空、地上のプラットフォームを共同で利用し、無線アクセス能力を向上する。
通信、計算、キャッシュ(C3)サービスをオンデマンドで、いつでも、そして、どこでも3D空間で提供するアーキテクチャを考えます。
論文 参考訳(メタデータ) (2020-10-19T13:07:57Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。