論文の概要: Enhancing accuracy of deep learning algorithms by training with
low-discrepancy sequences
- arxiv url: http://arxiv.org/abs/2005.12564v1
- Date: Tue, 26 May 2020 08:14:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 23:55:45.909475
- Title: Enhancing accuracy of deep learning algorithms by training with
low-discrepancy sequences
- Title(参考訳): 低差分シーケンスによる学習によるディープラーニングアルゴリズムの精度向上
- Authors: Siddhartha Mishra, T. Konstantin Rusch
- Abstract要約: トレーニングセットとして低差分シーケンスに基づく深層教師付き学習アルゴリズムを提案する。
提案アルゴリズムは, 適度な高次元の問題に対して, 標準的なディープラーニングアルゴリズムよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 15.2292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a deep supervised learning algorithm based on low-discrepancy
sequences as the training set. By a combination of theoretical arguments and
extensive numerical experiments we demonstrate that the proposed algorithm
significantly outperforms standard deep learning algorithms that are based on
randomly chosen training data, for problems in moderately high dimensions. The
proposed algorithm provides an efficient method for building inexpensive
surrogates for many underlying maps in the context of scientific computing.
- Abstract(参考訳): 学習セットとして,低分散シーケンスに基づく教師付き学習アルゴリズムを提案する。
理論的な議論と広範な数値実験を組み合わせることで,本アルゴリズムは,ランダムに選択されたトレーニングデータに基づく標準ディープラーニングアルゴリズムを,中程度に高い次元で問題に対して大幅に上回ることを示す。
提案アルゴリズムは、科学計算の文脈において、多くの基礎となる地図に対して安価なサロゲートを構築するための効率的な方法を提供する。
関連論文リスト
- Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Performance Analysis of Fractional Learning Algorithms [32.21539962359158]
従来のアルゴリズムよりも格段に優越性が高いかどうかは定かでないが、その性能が広範に分析されることはなかったため神話である。
本稿では,最小平均二乗および最急降下アルゴリズムの分数変分を厳密に解析する。
学習アルゴリズムの性能に関するその起源と結果について論じ,素早い準備の整った治療法を提案する。
論文 参考訳(メタデータ) (2021-10-11T12:06:44Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
確率的モデリングの最近の進歩は、確率の数値的評価を必要としないシミュレーションに基づく推論アルゴリズムを多数もたらした。
推論タスクと適切なパフォーマンス指標を備えたベンチマークを,アルゴリズムの初期選択とともに提供する。
性能指標の選択は重要であり、最先端のアルゴリズムでさえ改善の余地があり、逐次推定によりサンプリング効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-01-12T18:31:22Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Accelerated learning algorithms of general fuzzy min-max neural network
using a novel hyperbox selection rule [9.061408029414455]
本稿では,一般ファジィmin-maxニューラルネットワークの学習過程を高速化する手法を提案する。
提案手法は分岐結合解を形成する数学的公式に基づいている。
実験結果から,オンライン学習アルゴリズムと集約学習アルゴリズムの両方において,提案手法の学習時間の大幅な短縮が示された。
論文 参考訳(メタデータ) (2020-03-25T11:26:18Z) - Overall error analysis for the training of deep neural networks via
stochastic gradient descent with random initialisation [2.4874453414078896]
本研究では,2次損失関数を用いた深層学習に基づく経験的リスク最小化の数学的に厳密な完全誤差解析を行う。
しかし、我々は、確率論的に強い意味でのディープラーニングに基づくアルゴリズムのための、科学文献における最初の完全な誤り解析を確立した。
論文 参考訳(メタデータ) (2020-03-03T01:41:17Z) - Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules [4.898659895355356]
最適な個別化処理規則を推定するための非パラメトリックアルゴリズムを提案する。
提案アルゴリズムは機械学習文学において最も強力なアルゴリズムの1つであるXGBoostアルゴリズムに基づいている。
論文 参考訳(メタデータ) (2020-01-31T22:26:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。