論文の概要: Locally private non-asymptotic testing of discrete distributions is
faster using interactive mechanisms
- arxiv url: http://arxiv.org/abs/2005.12601v1
- Date: Tue, 26 May 2020 09:43:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 00:40:08.261281
- Title: Locally private non-asymptotic testing of discrete distributions is
faster using interactive mechanisms
- Title(参考訳): 離散分布の局所的非漸近的テストは対話的メカニズムを用いて高速である
- Authors: Thomas B. Berrett and Cristina Butucea
- Abstract要約: 局所的な差分プライバシーの制約の下で、多項分布またはより一般的な離散分布をテストするための分離率を求める。
非対話型プライバシ機構のみを許す場合と、すべてのシーケンシャルな対話型プライバシ機構を許す場合の両方において、効率的なランダム化アルゴリズムとテスト手順を構築します。
- 参考スコア(独自算出の注目度): 3.04585143845864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We find separation rates for testing multinomial or more general discrete
distributions under the constraint of local differential privacy. We construct
efficient randomized algorithms and test procedures, in both the case where
only non-interactive privacy mechanisms are allowed and also in the case where
all sequentially interactive privacy mechanisms are allowed. The separation
rates are faster in the latter case. We prove general information theoretical
bounds that allow us to establish the optimality of our algorithms among all
pairs of privacy mechanisms and test procedures, in most usual cases.
Considered examples include testing uniform, polynomially and exponentially
decreasing distributions.
- Abstract(参考訳): 局所微分プライバシーの制約下で多項またはそれ以上の離散分布をテストするための分離率を求める。
非対話型プライバシ機構のみを許す場合と、すべてのシーケンシャルな対話型プライバシ機構を許す場合の両方において、効率的なランダム化アルゴリズムとテスト手順を構築する。
後者の場合、分離速度は速い。
一般的な情報理論的境界を証明し、ほとんどの場合において、すべてのプライバシメカニズムとテスト手順間のアルゴリズムの最適性を確立することができる。
検討された例としては、均一なテスト、多項式的および指数関数的に減少する分布がある。
関連論文リスト
- Minimax Optimal Two-Sample Testing under Local Differential Privacy [3.3317825075368908]
ローカルディファレンシャルプライバシ(LDP)の下でのプライベート2サンプルテストにおけるプライバシと統計ユーティリティのトレードオフについて検討する。
本稿では,Laplace,離散Laplace,GoogleのRAPPORなど,実用的なプライバシメカニズムを用いたプライベートな置換テストを紹介する。
我々は,ビンニングによる連続データの研究を行い,その一様分離率をH"olderとBesovの滑らか度クラスよりもLDPで検討した。
論文 参考訳(メタデータ) (2024-11-13T22:44:25Z) - Differentially Private Permutation Tests: Applications to Kernel Methods [7.596498528060537]
差分プライバシーは、プライバシー保護のための厳格な枠組みとして登場し、学術界と産業界の両方で広く認知されている。
本稿では,差分プライベートな置換テストを導入することにより,仮説テストの文脈における懸念を軽減することを目的とする。
提案フレームワークは、従来の非プライベートな置換試験をプライベートな設定に拡張し、有限サンプルの妥当性と差分プライバシーの両方を厳密な方法で維持する。
論文 参考訳(メタデータ) (2023-10-29T15:13:36Z) - Generalized Schrödinger Bridge Matching [54.171931505066]
一般化Schr"odinger Bridge (GSB) 問題設定は、機械学習の内外を問わず、多くの科学領域で一般的である。
我々は最近の進歩に触発された新しいマッチングアルゴリズムである一般化シュリンガーブリッジマッチング(GSBM)を提案する。
このような一般化は条件最適制御の解法として、変分近似を用いることができることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:42:11Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - Privacy Induces Robustness: Information-Computation Gaps and Sparse Mean
Estimation [8.9598796481325]
本稿では, アルゴリズムと計算複雑性の両面において, 異なる統計問題に対する観測結果について検討する。
プライベートスパース平均推定のための情報計算ギャップを確立する。
また、プライバシーによって引き起こされる情報計算のギャップを、いくつかの統計や学習問題に対して証明する。
論文 参考訳(メタデータ) (2022-11-01T20:03:41Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
そこで本研究では,PrivUnitが局所的プライベートな乱数化器群間の最適分散を実現することを示す。
また,ガウス分布に基づくPrivUnitの新たな変種も開発しており,数学的解析に適しており,同じ最適性保証を享受できる。
論文 参考訳(メタデータ) (2022-05-05T06:43:46Z) - Nonparametric extensions of randomized response for private confidence sets [51.75485869914048]
本研究は,局所的差分プライバシー(LDP)の制約の下で,集団平均の非パラメトリック,非漸近的統計的推測を行う手法を導出する。
民営化データへのアクセスのみを与えられた場合、$mustar$に対して信頼区間(CI)と時間一様信頼シーケンス(CS)を提示する。
論文 参考訳(メタデータ) (2022-02-17T16:04:49Z) - Uniformity Testing in the Shuffle Model: Simpler, Better, Faster [0.0]
均一性テスト(英: Uniformity testing)または独立した観察が均一に分散されているかどうかをテストすることは、分散テストにおける問題である。
本研究では,シャッフルモデルにおける既知の一様性試験アルゴリズムの解析を大幅に単純化する。
論文 参考訳(メタデータ) (2021-08-20T03:43:12Z) - Smoothed Differential Privacy [55.415581832037084]
微分プライバシー(DP)は、最悪のケース分析に基づいて広く受け入れられ、広く適用されているプライバシーの概念である。
本稿では, 祝賀されたスムーズな解析の背景にある最悪の平均ケースのアイデアに倣って, DPの自然な拡張を提案する。
サンプリング手順による離散的なメカニズムはDPが予測するよりもプライベートであるのに対して,サンプリング手順による連続的なメカニズムはスムーズなDP下では依然としてプライベートではないことが証明された。
論文 参考訳(メタデータ) (2021-07-04T06:55:45Z) - Compressive Privatization: Sparse Distribution Estimation under Locally
Differentially Privacy [18.43218511751587]
対象の分布がスパースかほぼスパースである限り、必要なサンプルの数は大幅に削減できることを示した。
我々のメカニズムは民営化と次元化を同時に行い、サンプルの複雑さは次元化の減少にのみ依存する。
論文 参考訳(メタデータ) (2020-12-03T17:14:23Z) - Public Bayesian Persuasion: Being Almost Optimal and Almost Persuasive [57.47546090379434]
i) 任意の状態空間, (ii) 任意の行動空間, (iii) 任意の送信者のユーティリティ関数を用いて, 一般の状況下での公衆の説得問題を考察する。
任意の公的な説得問題に対して準多項式時間ビクテリア近似アルゴリズムを提案し、特定の設定でQPTASを出力する。
論文 参考訳(メタデータ) (2020-02-12T18:59:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。