論文の概要: BHN: A Brain-like Heterogeneous Network
- arxiv url: http://arxiv.org/abs/2005.12826v2
- Date: Sat, 6 Jun 2020 09:07:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 23:20:54.753567
- Title: BHN: A Brain-like Heterogeneous Network
- Title(参考訳): 脳のような異種ネットワークBHN
- Authors: Tao Liu
- Abstract要約: 我々は,多くの分散表現と1つのグローバルアテンション表現を協調的に学習できる脳様ヘテロジニアスネットワーク(BHN)を提案する。
ミニマックス方式で、分散、自己監督、勾配分離された目的関数を最適化することにより、実験中の画像やビデオのフレームのパッチから生成された表現を改善する。
- 参考スコア(独自算出の注目度): 3.6888480380309416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human brain works in an unsupervised way, and more than one brain region
is essential for lighting up intelligence. Inspired by this, we propose a
brain-like heterogeneous network (BHN), which can cooperatively learn a lot of
distributed representations and one global attention representation. By
optimizing distributed, self-supervised, and gradient-isolated objective
functions in a minimax fashion, our model improves its representations, which
are generated from patches of pictures or frames of videos in experiments.
- Abstract(参考訳): 人間の脳は教師なしの方法で機能し、複数の脳領域が知性を照らすのに不可欠です。
そこで我々は,多くの分散表現と1つのグローバルアテンション表現を協調的に学習できる脳様異種ネットワーク(BHN)を提案する。
分散,自己教師付き,勾配分離された目的関数をminimax方式で最適化することで,実験において画像や映像のフレームのパッチから生成される表現を改善する。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Achieving More Human Brain-Like Vision via Human EEG Representational Alignment [1.811217832697894]
非侵襲脳波に基づく人間の脳活動に対応する視覚モデル「Re(presentational)Al(ignment)net」を提案する。
我々の革新的な画像から脳への多層符号化フレームワークは、複数のモデル層を最適化することにより、人間の神経のアライメントを向上する。
我々の発見は、ReAlnetが人工と人間の視覚のギャップを埋め、より脳に似た人工知能システムへの道を歩むブレークスルーを表していることを示唆している。
論文 参考訳(メタデータ) (2024-01-30T18:18:41Z) - Multi-State Brain Network Discovery [37.63826758134553]
脳ネットワークは、人間の脳のfMRIスキャンからノードと平均信号を見つけることを目的としている。
通常、人間の脳は複数の活動状態を持ち、脳の活動は共同で決定される。
論文 参考訳(メタデータ) (2023-11-04T17:54:15Z) - Retinotopy Inspired Brain Encoding Model and the All-for-One Training
Recipe [14.943061215875655]
3つの画像モダリティにまたがる5つの公開データセットから100万以上のデータポイントを用いて、脳エンコーディングモデルを事前訓練した。
本稿では、一般的に使用される視覚バックボーンモデルのドロップイン置換として、事前学習モデルの有効性を示す。
論文 参考訳(メタデータ) (2023-07-26T08:06:40Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
機能的脳活動から直接人間の視覚的注意を特徴付ける脳誘発対人視覚注意ネットワーク(BI-AVAN)を提案する。
本モデルは,人間の脳が監督されていない方法で焦点を絞った映画フレーム内の視覚的物体を識別・発見するために,注意関連・無視対象間の偏りのある競合過程を模倣する。
論文 参考訳(メタデータ) (2022-10-27T22:20:36Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
1500万の画像テキストペアを事前訓練した,新たに設計されたマルチモーダル基礎モデルを提案する。
視覚的エンコーダも言語的エンコーダもマルチモーダルで訓練され,脳に近いことが判明した。
論文 参考訳(メタデータ) (2022-08-17T12:36:26Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
本稿では、領域マップされたfMRIシーケンスと構造接続性の両方を入力として組み込んだ効率的なグラフニューラルネットワークモデルを構築する。
サンプルレベルの適応的隣接行列を学習することで、潜伏する脳のダイナミクスのよい表現を見つけ出す。
これらのモジュールは容易に適応でき、神経科学領域以外の用途にも有用である可能性がある。
論文 参考訳(メタデータ) (2022-05-23T21:57:31Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Deep Representation Learning For Multimodal Brain Networks [9.567489601729328]
本稿では,マルチモーダル脳ネットワークを融合させるために,エンドツーエンドの深層グラフ表現学習(Deep Multimodal Brain Networks - DMBN)を提案する。
脳構造ネットワークから機能ネットワークへの高階ネットワークマッピングはノード領域で学習される。
実験結果は,提案手法が他の最先端の深層脳ネットワークモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-07-19T20:32:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。