論文の概要: Brain-like Functional Organization within Large Language Models
- arxiv url: http://arxiv.org/abs/2410.19542v2
- Date: Thu, 31 Oct 2024 03:24:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 09:54:55.029585
- Title: Brain-like Functional Organization within Large Language Models
- Title(参考訳): 大規模言語モデルにおける脳様機能組織
- Authors: Haiyang Sun, Lin Zhao, Zihao Wu, Xiaohui Gao, Yutao Hu, Mengfei Zuo, Wei Zhang, Junwei Han, Tianming Liu, Xintao Hu,
- Abstract要約: 人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
- 参考スコア(独自算出の注目度): 58.93629121400745
- License:
- Abstract: The human brain has long inspired the pursuit of artificial intelligence (AI). Recently, neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli, suggesting that ANNs may employ brain-like information processing strategies. While such alignment has been observed across sensory modalities--visual, auditory, and linguistic--much of the focus has been on the behaviors of artificial neurons (ANs) at the population level, leaving the functional organization of individual ANs that facilitates such brain-like processes largely unexplored. In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs), the foundational organizational structure of the human brain. Specifically, we extract representative patterns from temporal responses of ANs in large language models (LLMs), and use them as fixed regressors to construct voxel-wise encoding models to predict brain activity recorded by functional magnetic resonance imaging (fMRI). This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within LLMs. Our findings reveal that LLMs (BERT and Llama 1-3) exhibit brain-like functional architecture, with sub-groups of artificial neurons mirroring the organizational patterns of well-established FBNs. Notably, the brain-like functional organization of LLMs evolves with the increased sophistication and capability, achieving an improved balance between the diversity of computational behaviors and the consistency of functional specializations. This research represents the first exploration of brain-like functional organization within LLMs, offering novel insights to inform the development of artificial general intelligence (AGI) with human brain principles.
- Abstract(参考訳): 人間の脳は長い間、人工知能(AI)の追求にインスピレーションを与えてきた。
近年、神経イメージング研究は、人工ニューラルネットワーク(ANN)の計算表現と人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供しており、ANNは脳に似た情報処理戦略を採用する可能性があることを示唆している。
このようなアライメントは、視覚、聴覚、言語といった感覚のモダリティにわたって観察されてきたが、人口レベルでの人工ニューロン(AN)の行動に焦点が当てられ、脳のようなプロセスを促進する個々のANの機能的組織は、ほとんど探索されていない。
本研究では,ヒト脳の基盤構造である機能的脳ネットワーク(FBN)と人工ニューロンのサブグループを直接結合することにより,このギャップを埋める。
具体的には、大言語モデル(LLM)におけるANの時間応答から代表パターンを抽出し、それらを固定回帰器として使用して、機能的磁気共鳴画像(fMRI)によって記録された脳活動を予測するボクセルエンコーディングモデルを構築する。
このフレームワークは、ANサブグループとFBNを結びつけ、LLM内の脳に似た機能組織を記述できる。
LLMs (BERT, Llama 1-3) は, 確立したFBNの組織パターンを反映した人工ニューロンのサブグループで, 脳様の機能的構造を示すことが明らかとなった。
特に、LLMの脳のような機能的組織は、高度化と能力の向上とともに進化し、計算行動の多様性と機能的特殊化の整合性の間のバランスを改善する。
この研究は、人間の脳原理による人工知能(AGI)の発展を知らせる新しい洞察を提供する、LLM内の脳に似た機能組織を初めて探求した。
関連論文リスト
- Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
LLMを用いたfMRIエンコーディングと脳のスコアを用いた高齢者の言語関連機能変化について検討する。
脳のスコアと認知スコアの相関関係を脳全体のROIと言語関連ROIの両方で分析した。
以上の結果から,認知能力の向上は,中側頭回に有意な相関がみられた。
論文 参考訳(メタデータ) (2024-07-15T01:09:08Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
本稿では,階層型クラスタ同定と脳ネットワーク分類のための新しい解釈可能なトランスフォーマーモデルを提案する。
階層的クラスタリング(hierarchical clustering)の助けを借りて、このモデルは精度の向上と実行時の複雑性の低減を実現し、脳領域の機能的構造に関する明確な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-06T22:14:13Z) - Coupling Artificial Neurons in BERT and Biological Neurons in the Human
Brain [9.916033214833407]
本研究は,トランスフォーマーに基づくNLPモデルと言語に対する神経活動をリンクする,新しい,汎用的で効果的なフレームワークを提案する。
実験の結果,(1)ANsとBNsの活性化は有意に同期し,(2)ANsは意味のある言語/意味情報を持ち,BNシグネチャにアンカーし,(3)アンカーされたBNは神経言語学的文脈で解釈可能であることがわかった。
論文 参考訳(メタデータ) (2023-03-27T01:41:48Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。