Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated
Algorithm Selection
- URL: http://arxiv.org/abs/2005.13289v1
- Date: Wed, 27 May 2020 11:36:53 GMT
- Title: Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated
Algorithm Selection
- Authors: Jakob Bossek and Pascal Kerschke and Heike Trautmann
- Abstract summary: Traveling-Salesperson-Problem (TSP) is arguably one of the best-known NP-hard optimization problems.
We extend existing benchmarking studies by addressing anytime behaviour of inexact TSP solvers.
It turns out that performance ranking of solvers is highly dependent on the focused approximation quality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Traveling-Salesperson-Problem (TSP) is arguably one of the best-known
NP-hard combinatorial optimization problems. The two sophisticated heuristic
solvers LKH and EAX and respective (restart) variants manage to calculate
close-to optimal or even optimal solutions, also for large instances with
several thousand nodes in reasonable time. In this work we extend existing
benchmarking studies by addressing anytime behaviour of inexact TSP solvers
based on empirical runtime distributions leading to an increased understanding
of solver behaviour and the respective relation to problem hardness. It turns
out that performance ranking of solvers is highly dependent on the focused
approximation quality. Insights on intersection points of performances offer
huge potential for the construction of hybridized solvers depending on instance
features. Moreover, instance features tailored to anytime performance and
corresponding performance indicators will highly improve automated algorithm
selection models by including comprehensive information on solver quality.
Related papers
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Quality-Diversity Algorithms Can Provably Be Helpful for Optimization [24.694984679399315]
Quality-Diversity (QD) algorithms aim to find a set of high-performing, yet diverse solutions.
This paper tries to shed some light on the optimization ability of QD algorithms via rigorous running time analysis.
arXiv Detail & Related papers (2024-01-19T07:40:24Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Learning to repeatedly solve routing problems [5.08128537391027]
We present a learned for the reoptimization of a problem after a minor change in its data.
Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution.
This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution.
arXiv Detail & Related papers (2022-12-15T19:33:54Z) - Learning to Schedule Heuristics for the Simultaneous Stochastic
Optimization of Mining Complexes [2.538209532048867]
The proposed learn-to-perturb (L2P) hyper-heuristic is a multi-neighborhood simulated annealing algorithm.
L2P is tested on several real-world mining complexes, with an emphasis on efficiency, robustness, and generalization capacity.
Results show a reduction in the number of iterations by 30-50% and in the computational time by 30-45%.
arXiv Detail & Related papers (2022-02-25T18:20:14Z) - Learning Hard Optimization Problems: A Data Generation Perspective [44.4747903763245]
This paper demonstrates the volatility of the training data to the ability to approximate it.
It proposes a method for producing (exact or approximate) solutions to optimization problems that are amenable to supervised tasks.
arXiv Detail & Related papers (2021-06-04T17:03:44Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.