QMetrology from QCosmology: Study with Entangled Two Qubit Open Quantum
System in De Sitter Space
- URL: http://arxiv.org/abs/2005.13555v5
- Date: Thu, 25 Mar 2021 08:47:00 GMT
- Title: QMetrology from QCosmology: Study with Entangled Two Qubit Open Quantum
System in De Sitter Space
- Authors: Sayantan Choudhury, Satyaki Chowdhury, Nitin Gupta, Abinash Swain
- Abstract summary: We investigate the role of certain physical quantities in the open quantum dynamics of a two entangled qubit system under the Markovian approximation.
We apply both Classical Fisher Information (CFI) and Quantum Fisher Information (QFI) to correctly estimate these parameters.
We also present an interesting result of revival of out-of-equilibrium feature at the late time scales, arising due to the long range quantum entanglement at early time scale.
- Score: 1.7549208519206603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, our prime objective is to apply the techniques of parameter
estimation theory and the concept of Quantum Metrology in the form of Fisher
Information to investigate the role of certain physical quantities in the open
quantum dynamics of a two entangled qubit system under the Markovian
approximation. There exist various physical parameters which characterize such
system, but can not be treated as any quantum mechanical observable. It becomes
imperative to do a detailed parameter estimation analysis to determine the
physically consistent parameter space of such quantities. We apply both
Classical Fisher Information (CFI) and Quantum Fisher Information (QFI) to
correctly estimate these parameters, which play significant role to describe
the out-of-equilibrium and the long range quantum entanglement phenomena of
open quantum system. Quantum Metrology, compared to classical parameter
estimation theory, plays a two-fold superior role, improving the precision and
accuracy of parameter estimation. Additionally, in this paper we present a new
avenue in terms of Quantum Metrology, which beats the classical parameter
estimation. We also present an interesting result of revival of
out-of-equilibrium feature at the late time scales, arising due to the long
range quantum entanglement at early time scale and provide a physical
interpretation for the same in terms of Bell's Inequality Violation in early
time scale giving rise to non-locality.
Related papers
- Quantum steering ellipsoids and quantum obesity in critical systems [0.0]
Quantum obesity (QO) is new function used to quantify quantum correlations beyond entanglement.
We show that QO is a fundamental quantity to observe signature of quantum phase transitions.
arXiv Detail & Related papers (2023-12-19T19:14:08Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Analytical techniques in single and multi-parameter quantum estimation
theory: a focused review [0.0]
This review provides techniques on the analytical calculation of the quantum Fisher information as well as the quantum Fisher information matrix.
It provides a mathematical transition from classical to quantum estimation theory applied to many freedom quantum systems.
arXiv Detail & Related papers (2022-04-29T17:29:45Z) - Critical Quantum Metrology with Fully-Connected Models: From Heisenberg
to Kibble-Zurek Scaling [0.0]
Phase transitions represent a compelling tool for classical and quantum sensing applications.
Quantum sensors can saturate the Heisenberg scaling in the limit of large probe number and long measurement time.
Our analysis unveils the existence of universal precision-scaling regimes.
arXiv Detail & Related papers (2021-10-08T14:11:54Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Experimental estimation of the quantum Fisher information from
randomized measurements [9.795131832414855]
The quantum Fisher information (QFI) represents a fundamental concept in quantum physics.
Here, we explore how the QFI can be estimated via randomized measurements.
We experimentally validate this approach using two platforms: a nitrogen-vacancy center spin in diamond and a 4-qubit state provided by a superconducting quantum computer.
arXiv Detail & Related papers (2021-04-01T15:12:31Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.