論文の概要: An ENAS Based Approach for Constructing Deep Learning Models for Breast
Cancer Recognition from Ultrasound Images
- arxiv url: http://arxiv.org/abs/2005.13695v1
- Date: Wed, 27 May 2020 22:49:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 08:47:38.865110
- Title: An ENAS Based Approach for Constructing Deep Learning Models for Breast
Cancer Recognition from Ultrasound Images
- Title(参考訳): enasを用いた超音波画像を用いた乳癌認識のためのディープラーニングモデルの構築
- Authors: Mohammed Ahmed, Hongbo Du, Alaa AlZoubi
- Abstract要約: 胸部病変を超音波画像から分類するための最適なCNNアーキテクチャを見つけるために, ENAS法を適用した。
524US画像のデータセットによる実証研究により、ENASを用いて生成された最適なモデルの平均精度が89.3%であることが示されている。
本研究は,CNNモデル設計におけるENASアプローチが乳腺病変の超音波像の分類に有望な方向であることを示す。
- 参考スコア(独自算出の注目度): 0.30938904602244344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Convolutional Neural Networks (CNN) provides an "end-to-end" solution
for image pattern recognition with impressive performance in many areas of
application including medical imaging. Most CNN models of high performance use
hand-crafted network architectures that require expertise in CNNs to utilise
their potentials. In this paper, we applied the Efficient Neural Architecture
Search (ENAS) method to find optimal CNN architectures for classifying breast
lesions from ultrasound (US) images. Our empirical study with a dataset of 524
US images shows that the optimal models generated by using ENAS achieve an
average accuracy of 89.3%, surpassing other hand-crafted alternatives.
Furthermore, the models are simpler in complexity and more efficient. Our study
demonstrates that the ENAS approach to CNN model design is a promising
direction for classifying ultrasound images of breast lesions.
- Abstract(参考訳): Deep Convolutional Neural Networks (CNN)は、画像パターン認識のための"エンドツーエンド"ソリューションを提供する。
高性能CNNモデルの多くは手作りのネットワークアーキテクチャを使用しており、CNNの専門知識を必要とする。
本稿では,胸部病変を超音波(US)画像から分類するための最適なCNNアーキテクチャを見つけるために,ENAS(Efficient Neural Architecture Search)法を適用した。
524US画像のデータセットによる実証研究により、ENASを用いて生成された最適なモデルは平均89.3%の精度で、他の手作りの代替品よりも優れていることが示された。
さらに、モデルは複雑さがよりシンプルで、より効率的です。
本研究は,CNNモデル設計におけるENASアプローチが乳腺病変の超音波像の分類に有効であることを示す。
関連論文リスト
- HNAS-reg: hierarchical neural architecture search for deformable medical
image registration [0.8249180979158817]
本稿では、変形可能な医用画像登録のための最適なネットワークアーキテクチャを特定するための階層型NASフレームワーク(HNAS-Reg)を提案する。
636T1重み付き磁気共鳴画像(MRI)からなる3つのデータセットに対する実験により,提案手法により,画像登録精度が向上し,モデルサイズが小さくなる深層学習モデルを構築することができることを示した。
論文 参考訳(メタデータ) (2023-08-23T21:47:28Z) - Spherical CNN for Medical Imaging Applications: Importance of
Equivariance in image reconstruction and denoising [0.0]
同変ネットワークは、トモグラフィー応用のための効率的かつ高性能なアプローチである。
2次元および3次元の医療画像問題に対する同変球状CNNの有効性を評価した。
本稿では,従来の画像再構成ツールの補完としてSCNNを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-06T21:18:47Z) - GraphPNAS: Learning Distribution of Good Neural Architectures via Deep
Graph Generative Models [48.57083463364353]
ランダムグラフモデル学習のレンズを用いて,ニューラルアーキテクチャサーチ(NAS)について検討する。
本稿では,優れたアーキテクチャの分布を学習するグラフ生成モデルGraphPNASを提案する。
提案するグラフジェネレータは,RNNベースよりも一貫して優れており,最先端のNAS手法よりも優れた,あるいは同等のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-11-28T09:09:06Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
近年の進歩により、畳み込みニューラルネットワーク(CNN)アーキテクチャは乳がん検出のためのコンピュータ支援診断(CAD)システムの設計に利用できることが示されている。
乳腺病理像の2値分類のためのCNNモデルについて検討した。
我々は,200倍,400倍に拡大した病理像に対して,トレーニング済みのCNNネットワークを利用可能なBreaKHisデータセットで検証した。
論文 参考訳(メタデータ) (2022-01-04T03:09:40Z) - ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image
Prior [6.098254376499899]
DIPフレームワークにおける最適なニューラルアーキテクチャは、画像に依存していることを示す。
本稿では,DIPフレームワークのイメージ固有のNAS戦略を提案する。
実験の結果,画像特異的な指標は探索空間を小さなコホートモデルに還元し,最も優れたモデルが現在のNAS手法より画像復元に優れていることが判明した。
論文 参考訳(メタデータ) (2021-11-27T13:53:25Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
全方向画像の表現モデルの学習について検討し、全方向画像の深層学習モデルで使用される数学的ツールを再定義するために、HEALPixの球面一様サンプリングの特性を利用することを提案する。
提案したオン・ザ・スフィア・ソリューションは、等方形画像に適用された類似の学習モデルと比較して、13.7%のビットレートを節約できる圧縮ゲインを向上させる。
論文 参考訳(メタデータ) (2021-07-19T22:14:30Z) - Benchmarking CNN on 3D Anatomical Brain MRI: Architectures, Data
Augmentation and Deep Ensemble Learning [2.1446056201053185]
我々は最近のSOTA(State-of-the-art)3D CNNの広範なベンチマークを提案し、データ拡張と深層アンサンブル学習の利点も評価した。
年齢予測,性別分類,統合失調症診断の3つの課題について,N=10kスキャンを含む多地点の脳解剖学的MRIデータセットを用いて実験を行った。
その結果,VBM画像の予測精度は擬似RAWデータよりも有意に向上した。
DenseNetとSmall-DenseNetは、私たちが提案したより軽量なバージョンで、すべてのデータレシエーションのパフォーマンスにおいて優れた妥協を提供する。
論文 参考訳(メタデータ) (2021-06-02T13:00:35Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - PV-NAS: Practical Neural Architecture Search for Video Recognition [83.77236063613579]
ビデオタスクのためのディープニューラルネットワークは高度にカスタマイズされており、そのようなネットワークの設計にはドメインの専門家と高価な試行錯誤テストが必要である。
ネットワークアーキテクチャ検索の最近の進歩により、画像認識性能は大幅に向上した。
本研究では,実用的ビデオニューラルアーキテクチャ探索(PV-NAS)を提案する。
論文 参考訳(メタデータ) (2020-11-02T08:50:23Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。