論文の概要: CNN-based Approach for Cervical Cancer Classification in Whole-Slide
Histopathology Images
- arxiv url: http://arxiv.org/abs/2005.13924v1
- Date: Thu, 28 May 2020 11:45:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 05:46:41.100807
- Title: CNN-based Approach for Cervical Cancer Classification in Whole-Slide
Histopathology Images
- Title(参考訳): CNNによる全スライディング組織像の頸部癌分類
- Authors: Ferdaous Idlahcen, Mohammed Majid Himmi, Abdelhak Mahmoudi
- Abstract要約: 頸部がんは2040年までに年間460万人が死亡し、約90%がサハラ以南のアフリカ人女性である。
TCGAデータポータルからの頚部組織デジタルスライドはほとんどなく、全スライディング画像の障害物を克服するために前処理された。
その結果,F1スコアは98,26%,F1スコアは97,9%であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cervical cancer will cause 460 000 deaths per year by 2040, approximately 90%
are Sub-Saharan African women. A constantly increasing incidence in Africa
making cervical cancer a priority by the World Health Organization (WHO) in
terms of screening, diagnosis, and treatment. Conventionally, cancer diagnosis
relies primarily on histopathological assessment, a deeply error-prone
procedure requiring intelligent computer-aided systems as low-cost patient
safety mechanisms but lack of labeled data in digital pathology limits their
applicability. In this study, few cervical tissue digital slides from TCGA data
portal were pre-processed to overcome whole-slide images obstacles and included
in our proposed VGG16-CNN classification approach. Our results achieved an
accuracy of 98,26% and an F1-score of 97,9%, which confirm the potential of
transfer learning on this weakly-supervised task.
- Abstract(参考訳): 子宮頸がんは2040年までに年間460万人が死亡し、約90%がサハラ以南のアフリカ人女性である。
世界保健機関(WHO)は、アフリカにおける子宮頸癌の発生頻度を常に増加させ、スクリーニング、診断、治療の面で優先している。
従来、がん診断は主に病理組織学的評価に依存しており、知的コンピュータ支援システムを低コストの患者安全メカニズムとして必要としているが、デジタル病理学におけるラベル付きデータの欠如は適用可能性を制限する。
本研究は,TCGAデータポータルからの頚部組織デジタルスライドを前処理し,全スライディング画像障害を克服し,提案したVGG16-CNN分類手法に含めた。
結果は98,26%の精度と97,9%のf1スコアを達成し,この弱教師付きタスクにおけるトランスファー学習の可能性を確認した。
関連論文リスト
- Cervical Cancer Detection Using Multi-Branch Deep Learning Model [0.6249768559720121]
本研究では,MHSA (Multi-Head Self-Attention) と畳み込みニューラルネットワーク (CNN) を用いた頚部癌の画像分類の自動化手法を提案する。
我々のモデルは98.522%の顕著な精度を達成し、他の医療画像認識タスクに適用可能であることを約束している。
論文 参考訳(メタデータ) (2024-08-20T02:44:48Z) - Evaluating LeNet Algorithms in Classification Lung Cancer from
Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases [0.0]
深層学習モデルであるLeNetは肺腫瘍の検出に用いられている。
提案システムはイラク・オンコロジー教育病院・国立がん疾患センターで評価された。
論文 参考訳(メタデータ) (2023-05-19T19:23:08Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
この課題には10,091個のパッチレベルのアノテーションと1300万以上のラベル付きピクセルが含まれる。
第一位チームは0.8413mIoUを達成した(腫瘍:0.8389、ストーマ:0.7931、正常:0.8919)。
論文 参考訳(メタデータ) (2022-04-13T15:27:05Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Deep Learning-based Computational Pathology Predicts Origins for Cancers
of Unknown Primary [2.645435564532842]
原発不明癌 (CUP) は腫瘍由来の原発性解剖学的部位を特定できない診断群である。
最近の研究は、腫瘍原点の同定にゲノム学と転写学を使うことに重点を置いている。
深層学習に基づくCUPの差分診断が可能な計算病理アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-24T17:59:36Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
胸部CT(Central Computed Tomography)において,地域肺炎(CAP)からCOVID-19を自動診断するデュアルサンプリングアテンションネットワークを開発した。
特に,3D畳み込みネットワーク(CNN)を用いた新しいオンラインアテンションモジュールを提案する。
我々のアルゴリズムは、受信機動作特性曲線(AUC)値0.944、精度87.5%、感度86.9%、特異度90.1%、F1スコア82.0%の領域で、COVID-19画像を識別することができる。
論文 参考訳(メタデータ) (2020-05-06T09:56:51Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
新型コロナウイルス感染症2019(COVID-19)は、200カ国以上でパンデミックの流行を引き起こしている。
感染を制御するためには、感染した人々を識別し、分離することが最も重要なステップである。
本稿では,新型コロナウイルスの胸部CT診断をリアルタイムかつ説明可能な,新しい関節分類システム(JCS)を開発した。
論文 参考訳(メタデータ) (2020-04-15T12:30:40Z) - COVID-CAPS: A Capsule Network-based Framework for Identification of
COVID-19 cases from X-ray Images [34.93885932923011]
コロナウイルス(COVID-19)は、21世紀の2世紀末に、突然、そして間違いなく世界を変えた。
新型コロナウイルスの早期診断により、医療専門家や政府機関は移行の連鎖を破り、流行曲線をフラットにすることができる。
主に畳み込みニューラルネットワーク(CNN)をベースとしたディープニューラルネットワーク(DNN)ベースの診断ソリューション開発への関心が高まっている。
本稿では、小さなデータセットを処理可能な、Capsule Networks(COVID-CAPS)に基づく代替モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-06T14:20:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。