論文の概要: COVID 19 Diagnosis Analysis using Transfer Learning
- arxiv url: http://arxiv.org/abs/2503.12642v2
- Date: Sun, 23 Mar 2025 17:38:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 21:22:37.088691
- Title: COVID 19 Diagnosis Analysis using Transfer Learning
- Title(参考訳): トランスファーラーニングを用いた19例の診断解析
- Authors: Anjali Dharmik,
- Abstract要約: 本研究は、新型コロナウイルスの迅速かつ正確な診断におけるディープラーニングの利用について検討する。
本稿では,VGG16,VGG19,ResNet50の更新版を含む最先端の畳み込みニューラルネットワーク(CNN)を活用した自動検出システムを提案する。
その結果、最適化されたResNet50モデルは、97.77%の精度、100%の感度、93.33%の特異性、98.0%のF1スコアで最高の分類性能を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Coronaviruses, including SARS-CoV-2, are responsible for COVID-19, a highly transmissible disease that emerged in December 2019 in Wuhan, China. During the past five years, significant advancements have been made in understanding and mitigating the virus. Although the initial outbreak led to global health crises, improved vaccination strategies, antiviral treatments, and AI-driven diagnostic tools have contributed to better disease management. However, COVID-19 continues to pose risks, particularly for immuno-compromised individuals and those with pre-existing conditions. This study explores the use of deep learning for a rapid and accurate diagnosis of COVID-19, addressing ongoing challenges in healthcare infrastructure and testing accessibility. We propose an enhanced automated detection system leveraging state-of-the-art convolutional neural networks (CNNs), including updated versions of VGG16, VGG19, and ResNet50, to classify COVID-19 infections from chest radiographs and computerized tomography (CT) scans. Our results, based on an expanded dataset of over 6000 medical images, demonstrate that the optimized ResNet50 model achieves the highest classification performance, with 97.77% accuracy, 100% sensitivity, 93.33% specificity, and a 98.0% F1-score. These findings reinforce the potential of AI-assisted diagnostic tools in improving early detection and pandemic preparedness.
- Abstract(参考訳): 新型コロナウイルス(SARS-CoV-2)を含むコロナウイルスは、2019年12月に中国武漢で発生した感染性の高い感染症であるCOVID-19の原因となっている。
過去5年間で、ウイルスの理解と緩和に大きな進歩があった。
初期の流行は世界的な健康危機を引き起こしたが、予防接種戦略の改善、抗ウイルス治療、AIによる診断ツールが疾患管理の改善に寄与した。
しかし、新型コロナウイルスは、免疫不全の人や、既存の状態の人など、リスクを伴い続けている。
本研究は、医療インフラやアクセシビリティテストにおいて進行中の課題に対処するため、新型コロナウイルスの迅速かつ正確な診断にディープラーニングを用いることを検討する。
本稿では、VGG16、VGG19、ResNet50の更新版を含む最先端の畳み込みニューラルネットワーク(CNN)を活用して、胸部X線写真とCTスキャンからCOVID-19感染を分類する自動検出システムを提案する。
我々の結果は6000以上の医療画像のデータセットに基づいて、最適化されたResNet50モデルが97.77%の精度、100%の感度、93.33%の特異性、98.0%のF1スコアで最高の分類性能を達成することを示した。
これらの知見は、早期発見とパンデミックの準備を改善するAI支援診断ツールの可能性を強化した。
関連論文リスト
- COVID-19 Disease Identification on Chest-CT images using CNN and VGG16 [0.0]
新型コロナウイルス(COVID-19)は、2019年12月に中国武漢で発生したウイルスによる感染症である。
初期の医療機関は、新型コロナウイルス(COVID-19)を検出する適切な医療援助や薬が無かったため、混乱していた。
本研究では,胸部CT画像上でのCOVID-19自動同定のための畳み込みニューラルネットワーク(CNN)とVGG16に基づくモデルを提案する。
論文 参考訳(メタデータ) (2022-07-09T07:20:15Z) - COVID-19 Detection using Transfer Learning with Convolutional Neural
Network [0.0]
新型コロナウイルス(COVID-19)は、2019年12月に中国湖北省武漢で初めて確認された致命的な感染症である。
本研究では,CT画像からCOVID-19感染を検出するためのトランスファーラーニング戦略(CNN)を提案する。
提案モデルでは,Transfer Learning Model Inception V3を用いた多層畳み込みニューラルネットワーク(CNN)が設計されている。
論文 参考訳(メタデータ) (2022-06-17T05:30:14Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z) - Deep Neural Networks for COVID-19 Detection and Diagnosis using Images
and Acoustic-based Techniques: A Recent Review [0.36550217261503676]
新型コロナウイルスは2020年3月から世界保健機関(WHO)によってパンデミックと宣言されている。
これは、非定型肺炎を発症する可能性のある呼吸性熱帯性ウイルス感染である。
専門家は、COVID-19ウイルスを持っている人の早期発見の重要性を強調しています。
論文 参考訳(メタデータ) (2020-12-10T19:52:12Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - A New Screening Method for COVID-19 based on Ocular Feature Recognition
by Machine Learning Tools [66.20818586629278]
コロナウイルス感染症2019(COVID-19)は、数百万人に影響している。
一般的なCCDやCMOSカメラで撮影された視線領域の画像を分析する新しいスクリーニング手法は、新型コロナウイルスの急激なリスクスクリーニングを確実に実現する可能性がある。
論文 参考訳(メタデータ) (2020-09-04T00:50:27Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
胸部CT(Central Computed Tomography)において,地域肺炎(CAP)からCOVID-19を自動診断するデュアルサンプリングアテンションネットワークを開発した。
特に,3D畳み込みネットワーク(CNN)を用いた新しいオンラインアテンションモジュールを提案する。
我々のアルゴリズムは、受信機動作特性曲線(AUC)値0.944、精度87.5%、感度86.9%、特異度90.1%、F1スコア82.0%の領域で、COVID-19画像を識別することができる。
論文 参考訳(メタデータ) (2020-05-06T09:56:51Z) - Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT
Images: A Machine Learning-Based Approach [2.488407849738164]
新型コロナウイルスは感染性が高く、臨床的に承認された抗ウイルス薬やワクチンが使用できない病原体である。
現在、カナダでは新型コロナウイルスの初診は推奨されていない。
本研究では,新型コロナウイルスの自動分類のためのディープラーニングに基づく特徴抽出フレームワークの比較を行った。
論文 参考訳(メタデータ) (2020-04-22T15:34:45Z) - Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images
and Deep Convolutional Neural Networks [0.0]
中国発祥の新型コロナウイルス(COVID-19)は、他国に住む人々の間で急速に広まっている。
新型コロナウイルス(COVID-19)検査キットは毎日増えているため、病院では限られている。
5つの事前訓練された畳み込みニューラルネットワークに基づくモデルが、胸部X線写真を用いた新型コロナウイルス感染者の検出のために提案されている。
論文 参考訳(メタデータ) (2020-03-24T13:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。