論文の概要: Perception-aware time optimal path parameterization for quadrotors
- arxiv url: http://arxiv.org/abs/2005.13986v1
- Date: Thu, 28 May 2020 13:40:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 05:46:05.320601
- Title: Perception-aware time optimal path parameterization for quadrotors
- Title(参考訳): 知覚認識時最適経路パラメータ化
- Authors: Igor Spasojevic, Varun Murali, and Sertac Karaman
- Abstract要約: 本稿では,四元数に対する知覚認識時間最適経路パラメトリゼーションの問題に対処する。
本研究の主な貢献は、視野制約が限定された四元数に対する効率的な時間最適経路パラメトリゼーションアルゴリズムである。
- 参考スコア(独自算出の注目度): 27.87712507634954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing popularity of quadrotors has given rise to a class of
predominantly vision-driven vehicles. This paper addresses the problem of
perception-aware time optimal path parametrization for quadrotors. Although
many different choices of perceptual modalities are available, the low weight
and power budgets of quadrotor systems makes a camera ideal for on-board
navigation and estimation algorithms. However, this does come with a set of
challenges. The limited field of view of the camera can restrict the visibility
of salient regions in the environment, which dictates the necessity to consider
perception and planning jointly. The main contribution of this paper is an
efficient time optimal path parametrization algorithm for quadrotors with
limited field of view constraints. We show in a simulation study that a
state-of-the-art controller can track planned trajectories, and we validate the
proposed algorithm on a quadrotor platform in experiments.
- Abstract(参考訳): 四輪車の人気が高まったことで、主に視覚駆動の車両が出現した。
本稿では,クワッドロータに対する知覚・認識時間最適パスパラメトリゼーションの問題に対処する。
知覚的モダリティの選択肢は多種多様であるが、クワッドローターシステムの低重量と電力予算は、オンボードナビゲーションと推定アルゴリズムに理想的なカメラとなる。
しかし、これにはいくつかの課題がある。
カメラの視野が限られているため、環境中のサルエント領域の可視性が制限され、知覚と計画を同時に考慮する必要がある。
本論文の主な貢献は、視野の制限されたクワッドロータに対する効率的な時間最適経路パラメトリゼーションアルゴリズムである。
シミュレーション実験では,最先端のコントローラが計画された軌道を追跡できることを示し,提案手法を四角形プラットフォーム上で検証した。
関連論文リスト
- A New Clustering-based View Planning Method for Building Inspection with Drone [7.968454913643155]
ビュープランニングの目的は、ビジョンカバレッジ目標を達成するために、視覚関連タスクのほぼ最適視点を見つけることである。
本稿では,スペクトルクラスタリング,局所ポテンシャル場法,ハイパーヒューリスティックアルゴリズムを用いたクラスタリングに基づく2段階計算手法を提案する。
実験の結果,提案手法はより少ない視点と高いカバレッジでより良い解が得られることがわかった。
論文 参考訳(メタデータ) (2024-07-19T04:11:03Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
本稿では,鳥の目視で道路配置と車両占有率によって形成された局所地図を再構築する新しい枠組みを提案する。
我々のモデルは1つのGPU上で25FPSで動作し、リアルタイムパノラマHDマップの再構築に有効である。
論文 参考訳(メタデータ) (2022-11-15T13:52:41Z) - A Data-Driven Slip Estimation Approach for Effective Braking Control
under Varying Road Conditions [0.0]
多層ニューラルネットワークに基づく新しい推定アルゴリズムを提案する。
トレーニングは、広く使われている摩擦モデルから派生した合成データセットに基づいている。
実験結果とモデルベースラインとの比較により,提案手法が最適すべり推定に有効であることを示す。
論文 参考訳(メタデータ) (2022-11-04T16:24:05Z) - ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal
Feature Learning [132.20119288212376]
本稿では,認識,予測,計画タスクを同時に行うための,より代表的な特徴の集合に対する時空間的特徴学習手法を提案する。
私たちの知識を最大限に活用するために、私たちは、解釈可能なエンドツーエンドの自動運転システムの各部分を体系的に調査した最初の人です。
論文 参考訳(メタデータ) (2022-07-15T16:57:43Z) - Panoramic Panoptic Segmentation: Insights Into Surrounding Parsing for
Mobile Agents via Unsupervised Contrastive Learning [93.6645991946674]
我々はパノラマパノラマパノプティクスのセグメンテーションを最も総合的なシーン理解として紹介する。
完全な周囲の理解は、移動エージェントに最大限の情報を提供する。
本稿では,標準的なピンホール画像のモデルトレーニングを可能にし,学習した特徴を別のドメインに転送するフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-21T20:07:15Z) - The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation
Optimization under Uncertain Feature Positions [53.478856119297284]
特徴位置における異方性および不均一性を考慮した確率論的正規極性制約(PNEC)を導入する。
合成データの実験において、新しいPNECは元のNECよりも正確な回転推定値が得られることを示した。
我々は,提案手法を最先端のモノクロ回転専用オドメトリーシステムに統合し,実世界のKITTIデータセットに対して一貫した改良を行った。
論文 参考訳(メタデータ) (2022-04-05T14:47:11Z) - Illumination and Temperature-Aware Multispectral Networks for
Edge-Computing-Enabled Pedestrian Detection [10.454696553567809]
本研究は,高精度かつ効率的な歩行者検出のための軽量照明・温度対応マルチスペクトルネットワーク(IT-MN)を提案する。
提案アルゴリズムは、車載カメラで収集した公開データセットを用いて、選択した最先端アルゴリズムと比較して評価する。
提案アルゴリズムは,GPU上の画像ペアあたり14.19%,0.03秒の低ミス率と推論時間を実現する。
論文 参考訳(メタデータ) (2021-12-09T17:27:23Z) - Motion Planning for Autonomous Vehicles in the Presence of Uncertainty
Using Reinforcement Learning [0.0]
不確実性の下での運動計画は、自動運転車の開発における主要な課題の1つである。
最悪の事例を最適化して不確実性を管理するための強化学習に基づくソリューションを提案する。
提案手法は従来のRLアルゴリズムよりもはるかに優れた動作計画行動を示し,人間の運転スタイルと相容れない動作を示す。
論文 参考訳(メタデータ) (2021-10-01T20:32:25Z) - Regret-optimal Estimation and Control [52.28457815067461]
後悔最適推定器と後悔最適制御器は状態空間形式で導出可能であることを示す。
非線形力学系に対するモデル予測制御(MPC)と拡張KalmanFilter(EKF)の残差最適類似性を提案する。
論文 参考訳(メタデータ) (2021-06-22T23:14:21Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
自動運転パズルの最も重要なピースの1つは、周囲の交通機関の将来の動きを予測するタスクである。
一方はトップダウンのシーン化と他方はGAN(Generative Adrial Networks)に基づく手法が特に成功したことが示されている。
本稿では,これら2つの方向に基づいて,Aversa-based conditional GANアーキテクチャを提案する。
提案手法を実世界の大規模データセット上で評価し,最先端のGANベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-14T00:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。