Quantum Sampling Algorithms for Near-Term Devices
- URL: http://arxiv.org/abs/2005.14059v3
- Date: Tue, 7 Sep 2021 11:42:52 GMT
- Title: Quantum Sampling Algorithms for Near-Term Devices
- Authors: Dominik S. Wild, Dries Sels, Hannes Pichler, Cristian Zanoci, Mikhail
D. Lukin
- Abstract summary: We introduce a family of quantum algorithms that provide unbiased samples by encoding the entire Gibbs distribution.
We show that this approach leads to a speedup over a classical Markov chain algorithm.
It opens the door to exploring potentially useful sampling algorithms on near-term quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient sampling from a classical Gibbs distribution is an important
computational problem with applications ranging from statistical physics over
Monte Carlo and optimization algorithms to machine learning. We introduce a
family of quantum algorithms that provide unbiased samples by preparing a state
encoding the entire Gibbs distribution. We show that this approach leads to a
speedup over a classical Markov chain algorithm for several examples including
the Ising model and sampling from weighted independent sets of two different
graphs. Our approach connects computational complexity with phase transitions,
providing a physical interpretation of quantum speedup. Moreover, it opens the
door to exploring potentially useful sampling algorithms on near-term quantum
devices as the algorithm for sampling from independent sets on certain graphs
can be naturally implemented using Rydberg atom arrays.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Gaussian Boson Sampling to Accelerate NP-Complete Vertex-Minor Graph
Classification [0.9935277311162707]
We propose a hybrid quantum-classical algorithm for the NP-complete problem of determining if two graphs are minor of one another.
We find a graph embedding that allows trading between the one-shot classification accuracy and the amount of input squeezing.
We introduce a new classical algorithm based on graph spectra, which we show outperforms various well-known graph-similarity algorithms.
arXiv Detail & Related papers (2024-02-05T21:24:11Z) - Stochastic Quantum Sampling for Non-Logconcave Distributions and
Estimating Partition Functions [13.16814860487575]
We present quantum algorithms for sampling from nonlogconcave probability distributions.
$f$ can be written as a finite sum $f(x):= frac1Nsum_k=1N f_k(x)$.
arXiv Detail & Related papers (2023-10-17T17:55:32Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quantum Sampling Algorithms, Phase Transitions, and Computational
Complexity [0.0]
Drawing independent samples from a probability distribution is an important computational problem with applications in Monte Carlo algorithms, machine learning, and statistical physics.
The problem can in principle be solved on a quantum computer by preparing a quantum state that encodes the entire probability distribution followed by a projective measurement.
We investigate the complexity of adiabatically preparing such quantum states for the Gibbs distributions of various models including the Ising chain, hard-sphere models on different graphs, and a model encoding the unstructured search problem.
arXiv Detail & Related papers (2021-09-07T11:43:45Z) - Nearly Linear Row Sampling Algorithm for Quantile Regression [54.75919082407094]
We give a row sampling algorithm for the quantile loss function with sample complexity nearly linear in the dimensionality of the data.
Based upon our row sampling algorithm, we give the fastest known algorithm for quantile regression and a graph sparsification algorithm for balanced directed graphs.
arXiv Detail & Related papers (2020-06-15T13:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.