Algorithm Selection Framework for Cyber Attack Detection
- URL: http://arxiv.org/abs/2005.14230v1
- Date: Thu, 28 May 2020 18:49:29 GMT
- Title: Algorithm Selection Framework for Cyber Attack Detection
- Authors: Marc Chal\'e, Nathaniel D. Bastian, Jeffery Weir
- Abstract summary: algorithm selection framework is employed on the NSL-KDD data set.
Performance is compared between a rule-of-thumb strategy and a meta-learning strategy.
The framework recommends five algorithms from the taxonomy.
- Score: 2.320417845168326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The number of cyber threats against both wired and wireless computer systems
and other components of the Internet of Things continues to increase annually.
In this work, an algorithm selection framework is employed on the NSL-KDD data
set and a novel paradigm of machine learning taxonomy is presented. The
framework uses a combination of user input and meta-features to select the best
algorithm to detect cyber attacks on a network. Performance is compared between
a rule-of-thumb strategy and a meta-learning strategy. The framework removes
the conjecture of the common trial-and-error algorithm selection method. The
framework recommends five algorithms from the taxonomy. Both strategies
recommend a high-performing algorithm, though not the best performing. The work
demonstrates the close connectedness between algorithm selection and the
taxonomy for which it is premised.
Related papers
- Meta-Learning from Learning Curves for Budget-Limited Algorithm Selection [11.409496019407067]
In a budget-limited scenario, it is crucial to carefully select an algorithm candidate and allocate a budget for training it.
We propose a novel framework in which an agent must select in the process of learning the most promising algorithm without waiting until it is fully trained.
arXiv Detail & Related papers (2024-10-10T08:09:58Z) - HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection [75.84584400866254]
We propose a new algorithm selector leveraging special forests, combining the strengths of both approaches while alleviating their weaknesses.
HARRIS' decisions are based on a forest model, whose trees are created based on optimized on a hybrid ranking and regression loss function.
arXiv Detail & Related papers (2022-10-31T14:06:11Z) - Adversarial Deep Learning for Online Resource Allocation [12.118811903399951]
We use deep neural networks to learn an online algorithm for a resource allocation and pricing problem from scratch.
Our work is the first using deep neural networks to design an online algorithm from the perspective of worst-case performance guarantee.
arXiv Detail & Related papers (2021-11-19T15:48:43Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - Online Adversarial Attacks [57.448101834579624]
We formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases.
We first rigorously analyze a deterministic variant of the online threat model.
We then propose algoname, a simple yet practical algorithm yielding a provably better competitive ratio for $k=2$ over the current best single threshold algorithm.
arXiv Detail & Related papers (2021-03-02T20:36:04Z) - An Empirical Study of Derivative-Free-Optimization Algorithms for
Targeted Black-Box Attacks in Deep Neural Networks [8.368543987898732]
This paper considers four pre-existing state-of-the-art DFO-based algorithms along with the introduction of a new algorithm built on BOBYQA.
We compare these algorithms in a variety of settings according to the fraction of images that they successfully misclassify.
Experiments disclose how the likelihood of finding an adversarial example depends on both the algorithm used and the setting of the attack.
arXiv Detail & Related papers (2020-12-03T13:32:20Z) - Towards Meta-Algorithm Selection [78.13985819417974]
Instance-specific algorithm selection (AS) deals with the automatic selection of an algorithm from a fixed set of candidates.
We show that meta-algorithm-selection can indeed prove beneficial in some cases.
arXiv Detail & Related papers (2020-11-17T17:27:33Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.