論文の概要: Combining Fine- and Coarse-Grained Classifiers for Diabetic Retinopathy
Detection
- arxiv url: http://arxiv.org/abs/2005.14308v1
- Date: Thu, 28 May 2020 21:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 05:02:19.019175
- Title: Combining Fine- and Coarse-Grained Classifiers for Diabetic Retinopathy
Detection
- Title(参考訳): 糖尿病網膜症検出のための細粒度および粗粒度分類器の組み合わせ
- Authors: Muhammad Naseer Bajwa, Yoshinobu Taniguchi, Muhammad Imran Malik,
Wolfgang Neumeier, Andreas Dengel, Sheraz Ahmed
- Abstract要約: 網膜基底画像における早期糖尿病網膜症の視覚アーチファクトは、通常小さく、目立たずで、網膜全体に散らばっている。
本稿では,画像全体からの識別特徴を検出する粗粒度分類器と,病理学的に重要な領域に特に注意を払う細粒度分類器の組み合わせを提案する。
- 参考スコア(独自算出の注目度): 6.201033439090515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual artefacts of early diabetic retinopathy in retinal fundus images are
usually small in size, inconspicuous, and scattered all over retina. Detecting
diabetic retinopathy requires physicians to look at the whole image and fixate
on some specific regions to locate potential biomarkers of the disease.
Therefore, getting inspiration from ophthalmologist, we propose to combine
coarse-grained classifiers that detect discriminating features from the whole
images, with a recent breed of fine-grained classifiers that discover and pay
particular attention to pathologically significant regions. To evaluate the
performance of this proposed ensemble, we used publicly available EyePACS and
Messidor datasets. Extensive experimentation for binary, ternary and quaternary
classification shows that this ensemble largely outperforms individual image
classifiers as well as most of the published works in most training setups for
diabetic retinopathy detection. Furthermore, the performance of fine-grained
classifiers is found notably superior than coarse-grained image classifiers
encouraging the development of task-oriented fine-grained classifiers modelled
after specialist ophthalmologists.
- Abstract(参考訳): 網膜基底画像における早期糖尿病網膜症の視覚アーチファクトは、通常小さく、目立たない、網膜全体に散らばっている。
糖尿病網膜症を検出するためには、医師は画像全体を見て特定の領域に固定し、疾患の潜在的なバイオマーカーを見つける必要がある。
そこで,眼科医のインスピレーションを得て,画像全体の識別特徴を検出する粗粒度分類器と,病理学的に重要な領域に特に注意を払っている細粒度分類器の組み合わせを提案する。
提案アンサンブルの性能を評価するため,EyePACSとMessidorのデータセットを用いた。
二分体、三分体、四分体に対する大規模な実験は、このアンサンブルが糖尿病網膜症検出のためのほとんどのトレーニングセットにおいて、個々の画像分類器よりもはるかに優れていることを示している。
さらに、細粒度分類器の性能は、専門眼科医をモデルとしたタスク指向の細粒度分類器の開発を促進する粗粒度分類器よりも顕著に優れている。
関連論文リスト
- Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
糖尿病網膜症(英: Diabetic Retinopathy, DR)は、糖尿病において網膜に存在する血管網を損傷する障害である。
経験豊富な臨床医は、疾患の特定に使用される画像中の腫瘍を識別する必要があるため、カラー・ファンドス画像を用いてDR診断を行うのにしばらく時間がかかる可能性がある。
論文 参考訳(メタデータ) (2023-04-29T16:11:34Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
皮膚科画像から自己教師付き特徴を学習するために特に最適化されたGraVISを提案する。
GraVISは、病変のセグメンテーションと疾患分類のタスクにおいて、転送学習と自己教師型学習を著しく上回っている。
論文 参考訳(メタデータ) (2023-01-11T11:38:37Z) - Artifact-Tolerant Clustering-Guided Contrastive Embedding Learning for
Ophthalmic Images [18.186766129476077]
眼科画像の表現を学習するための,EyeLearnと呼ばれる人工物耐性の非教師なし学習フレームワークを提案する。
EyeLearnには、アーティファクトのない眼科画像の最良の予測が可能な表現を学ぶためのアーティファクト修正モジュールがある。
EyeLearnを評価するために,緑内障患者の実眼画像データセットを用いて,視覚野の予測と緑内障検出に学習表現を用いた。
論文 参考訳(メタデータ) (2022-09-02T01:25:45Z) - Deep Semi-Supervised and Self-Supervised Learning for Diabetic
Retinopathy Detection [0.0]
糖尿病網膜症は、先進国の労働年齢層における失明の主要な原因の1つである。
深部ニューラルネットワークは眼底画像のDR分類のための自動化システムで広く利用されている。
本稿では,ラベル付き画像とラベル付き画像を利用して糖尿病網膜症を検出するモデルを訓練する半教師付き手法を提案する。
論文 参考訳(メタデータ) (2022-08-04T02:28:13Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
白内障は一般的な眼疾患であり、盲目や視力障害の主な原因の1つである。
近赤外画像を用いた白内障検出のための新しいアルゴリズムを提案する。
深層学習に基づくアイセグメンテーションとマルチタスクネットワーク分類ネットワークについて述べる。
論文 参考訳(メタデータ) (2021-10-06T08:10:28Z) - Self-Supervised Learning from Unlabeled Fundus Photographs Improves
Segmentation of the Retina [4.815051667870375]
基礎撮影は網膜イメージングの第一の方法であり、糖尿病網膜症予防に必須である。
現在のセグメンテーション法は、実際の臨床応用に典型的な画像条件や病理の多様性に対して堅牢ではない。
コントラスト型自己教師型学習を用いて,EyePACSデータセットの多種多様な未ラベル画像を利用する。
論文 参考訳(メタデータ) (2021-08-05T18:02:56Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Towards the Localisation of Lesions in Diabetic Retinopathy [2.3204178451683264]
本研究は,4つの最先端ディープラーニングモデルの事前学習重量を用いて,糖尿病網膜症(DR)基底画像の局所化マップを作成し,比較する。
inceptionv3は、テスト分類精度96.07%で最高の性能を達成し、病変を他のモデルよりも良く高速にローカライズする。
論文 参考訳(メタデータ) (2020-12-21T15:39:17Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。