論文の概要: NuClick: A Deep Learning Framework for Interactive Segmentation of
Microscopy Images
- arxiv url: http://arxiv.org/abs/2005.14511v2
- Date: Tue, 7 Jul 2020 15:27:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 23:59:40.670997
- Title: NuClick: A Deep Learning Framework for Interactive Segmentation of
Microscopy Images
- Title(参考訳): NuClick:顕微鏡画像のインタラクティブセグメンテーションのためのディープラーニングフレームワーク
- Authors: Navid Alemi Koohbanani, Mostafa Jahanifar, Neda Zamani Tajadin, and
Nasir Rajpoot
- Abstract要約: 我々は,核,細胞,腺のアノテーション収集を高速化するための単純なCNNベースのアプローチを提案する。
腺などの多細胞構造に対して,NuClickを誘導信号としてスイグルで提供する新しい手法を提案する。
NuClickはオブジェクトスケールに適応し、ユーザ入力の変動に対して堅牢で、新しいドメインに適応し、信頼できるアノテーションを提供する。
- 参考スコア(独自算出の注目度): 1.3888122061254422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object segmentation is an important step in the workflow of computational
pathology. Deep learning based models generally require large amount of labeled
data for precise and reliable prediction. However, collecting labeled data is
expensive because it often requires expert knowledge, particularly in medical
imaging domain where labels are the result of a time-consuming analysis made by
one or more human experts. As nuclei, cells and glands are fundamental objects
for downstream analysis in computational pathology/cytology, in this paper we
propose a simple CNN-based approach to speed up collecting annotations for
these objects which requires minimum interaction from the annotator. We show
that for nuclei and cells in histology and cytology images, one click inside
each object is enough for NuClick to yield a precise annotation. For
multicellular structures such as glands, we propose a novel approach to provide
the NuClick with a squiggle as a guiding signal, enabling it to segment the
glandular boundaries. These supervisory signals are fed to the network as
auxiliary inputs along with RGB channels. With detailed experiments, we show
that NuClick is adaptable to the object scale, robust against variations in the
user input, adaptable to new domains, and delivers reliable annotations. An
instance segmentation model trained on masks generated by NuClick achieved the
first rank in LYON19 challenge. As exemplar outputs of our framework, we are
releasing two datasets: 1) a dataset of lymphocyte annotations within IHC
images, and 2) a dataset of segmented WBCs in blood smear images.
- Abstract(参考訳): オブジェクトセグメンテーションは、計算病理学のワークフローにおける重要なステップである。
ディープラーニングベースのモデルは一般的に、正確で信頼性の高い予測のために大量のラベル付きデータを必要とする。
しかし、ラベル付きデータの収集は、特に1人または複数の人間の専門家による時間のかかる分析の結果である医療画像領域において、専門家の知識を必要とすることが多いため、高価である。
本稿では, 核, 細胞, 腺が, 計算病理・細胞学における下流解析の基本的な対象であるとして, アノテーションの収集を高速化するためのCNNベースの簡単なアプローチを提案する。
組織学および細胞学画像における核と細胞について,各オブジェクト内のワンクリックでnuclickが正確なアノテーションを得られることを示す。
腺などの多細胞構造に対して, ニュークリックを誘導信号として提供し, 腺境界の分割を可能にする新しいアプローチを提案する。
これらの監視信号は、RGBチャネルと共に補助入力としてネットワークに送られる。
詳細な実験により、NuClickはオブジェクトスケールに適応し、ユーザ入力の変動に対して堅牢であり、新しいドメインに適応し、信頼できるアノテーションを提供することを示す。
NuClickによって生成されたマスクで訓練されたインスタンスセグメンテーションモデルは、LYON19チャレンジで1位を獲得した。
私たちのフレームワークの例示として、私たちは2つのデータセットをリリースします。
1)IHC画像内のリンパ球アノテーションのデータセット、及び
2) 血液スミア画像における分画WBCのデータセット。
関連論文リスト
- SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis [8.489318619991534]
深層学習は、精神疾患や個人の特徴に関連する静止状態機能型磁気共鳴イメージング(rsfMRI)のパターンを明らかにするのに役立つ。
しかし、深層学習の発見を解釈する問題は、fMRIによる分析よりも明らかではない。
スパーシフィケーションと自己超越に基づくこれらの課題を緩和するための簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T18:35:57Z) - AWGUNET: Attention-Aided Wavelet Guided U-Net for Nuclei Segmentation in Histopathology Images [26.333686941245197]
本稿では,U-NetアーキテクチャとDenseNet-121バックボーンを組み合わせたセグメンテーション手法を提案する。
本モデルでは,ウェーブレット誘導チャネルアテンションモジュールを導入し,セル境界のデライン化を促進させる。
その結果,Mouseg と TNBC の2つの病理組織学的データセットを用いて,提案モデルの優位性を実証した。
論文 参考訳(メタデータ) (2024-06-12T17:10:27Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
少数ショット学習(FSL)の観点から、アノテーション効率の良い核インスタンスセグメンテーションを定式化することを提案する。
我々の研究は、計算病理学の隆盛とともに、多くの完全注釈付きデータセットが一般に公開されていることに動機づけられた。
いくつかの公開データセットに対する大規模な実験は、SGFSISが他のアノテーション効率のよい学習ベースラインより優れていることを示している。
論文 参考訳(メタデータ) (2024-02-26T03:49:18Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation
and Classification [4.642724910208435]
組織像解析のための大規模データセットの収集を可能にする多段階アノテーションパイプラインを提案する。
我々は、50万近いラベル付き核を含む、既知の最大の核インスタンスのセグメンテーションと分類データセットを生成する。
論文 参考訳(メタデータ) (2021-08-25T11:58:52Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Going to Extremes: Weakly Supervised Medical Image Segmentation [12.700841704699615]
セグメンテーションモデルをトレーニングするために、極端点クリックという形で最小限のユーザインタラクションを使うことを提案する。
ランダムウォーカアルゴリズムを利用した極端点に基づいて初期セグメンテーションを生成する。
この初期セグメンテーションは、完全な畳み込みネットワークを訓練するためにノイズの多い監視信号として使用される。
論文 参考訳(メタデータ) (2020-09-25T00:28:10Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
顕微鏡画像における触覚細胞のセグメンテーション法を提案する。
距離マップにインスパイアされた新しい細胞境界の表現を用いることで, 触覚細胞だけでなく, 近接細胞をトレーニングプロセスで利用することができる。
この表現は、特にアノテーションエラーに対して堅牢であり、未表現または未含の細胞型を含むトレーニングデータに含まれる顕微鏡画像のセグメンテーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2020-04-03T11:55:28Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。