論文の概要: Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation
for Semantic Nighttime Image Segmentation
- arxiv url: http://arxiv.org/abs/2005.14553v2
- Date: Thu, 7 Jan 2021 15:26:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 05:27:41.228426
- Title: Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation
for Semantic Nighttime Image Segmentation
- Title(参考訳): 意味的夜間画像分割のためのマップガイド付きカリキュラム領域適応と不確実性評価
- Authors: Christos Sakaridis, Dengxin Dai, Luc Van Gool
- Abstract要約: 夜間アノテーションを使わずに,日毎のセマンティックセマンティックセマンティクスモデルを適用するためのカリキュラムフレームワークを開発した。
また、夜間画像のセマンティクスの実質的不確実性に対処するための新しい評価フレームワークを設計する。
- 参考スコア(独自算出の注目度): 107.33492779588641
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of semantic nighttime image segmentation and improve
the state-of-the-art, by adapting daytime models to nighttime without using
nighttime annotations. Moreover, we design a new evaluation framework to
address the substantial uncertainty of semantics in nighttime images. Our
central contributions are: 1) a curriculum framework to gradually adapt
semantic segmentation models from day to night through progressively darker
times of day, exploiting cross-time-of-day correspondences between daytime
images from a reference map and dark images to guide the label inference in the
dark domains; 2) a novel uncertainty-aware annotation and evaluation framework
and metric for semantic segmentation, including image regions beyond human
recognition capability in the evaluation in a principled fashion; 3) the Dark
Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight
images with correspondences to their daytime counterparts plus a set of 201
nighttime images with fine pixel-level annotations created with our protocol,
which serves as a first benchmark for our novel evaluation. Experiments show
that our map-guided curriculum adaptation significantly outperforms
state-of-the-art methods on nighttime sets both for standard metrics and our
uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals
that selective invalidation of predictions can improve results on data with
ambiguous content such as our benchmark and profit safety-oriented applications
involving invalid inputs.
- Abstract(参考訳): 夜間アノテーションを使わずに夜間モデルを夜間に適応させることにより、夜間画像のセグメンテーションの課題に対処し、その現状を改善する。
さらに,夜間画像における意味論の不確実性に対処するための新しい評価枠組みを設計する。
私たちの中心となる貢献は
1 暗黒領域におけるラベル推論の指針として、基準地図及び暗黒画像からの日中画像の相互対応を利用して、昼から夜にかけて、徐々に暗黒時間にセマンティックセグメンテーションモデルを適応させるカリキュラムの枠組み
2 原則的な方法での評価において、人間の認識能力を超えた画像領域を含む意味セグメンテーションのための新しい不確実性認識アノテーション評価フレームワーク及びメトリクス
3) the dark zurich dataset, 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences with their daytime equivalents and a set of 201 nighttime images with fine pixel-level annotations created with our protocol, was a first benchmark for our novel evaluation。
実験により,マップガイド付きカリキュラム適応が,標準指標と不確実性対応指標の両方において,夜間集合の最先端手法を著しく上回っていることが示された。
さらに,不確実性を考慮した評価の結果,予測の選択的無効化は,ベンチマークや不正入力を含む利益安全指向のアプリケーションなど不明瞭な内容のデータに対する結果を改善することができることがわかった。
関連論文リスト
- Night-to-Day Translation via Illumination Degradation Disentanglement [51.77716565167767]
ナイト・トゥ・デイの翻訳は、夜間のシーンの昼のようなビジョンを達成することを目的としている。
複雑な劣化を伴う夜間画像の処理は 未熟な条件下では 重要な課題です
夜間画像の劣化パターンを識別するためにtextbfN2D3 を提案する。
論文 参考訳(メタデータ) (2024-11-21T08:51:32Z) - Exploring Reliable Matching with Phase Enhancement for Night-time Semantic Segmentation [58.180226179087086]
夜間セマンティックセマンティックセグメンテーションに適した新しいエンドツーエンド最適化手法であるNightFormerを提案する。
具体的には,画素レベルのテクスチャ・エンハンスメント・モジュールを設計し,フェーズ・エンハンスメントとアンプリメント・アテンションとともに階層的にテクスチャ・アウェア機能を取得する。
提案手法は、最先端の夜間セマンティックセグメンテーション手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2024-08-25T13:59:31Z) - Self-Supervised Monocular Depth Estimation in the Dark: Towards Data Distribution Compensation [24.382795861986803]
光度一貫性の仮定は、複雑な照明条件下で撮影されたビデオには通常違反するため、自己超越のために夜間画像を使用することは信頼できない。
本研究では,トレーニング中に夜間画像を使用しない夜間単眼深度推定手法を提案する。
論文 参考訳(メタデータ) (2024-04-22T03:39:03Z) - Introspective Deep Metric Learning [91.47907685364036]
本稿では,不確実性を考慮した画像比較のためのイントロスペクティブな深度学習フレームワークを提案する。
提案するIDMLフレームワークは,不確実性モデリングによるディープメトリック学習の性能を向上させる。
論文 参考訳(メタデータ) (2023-09-11T16:21:13Z) - Similarity Min-Max: Zero-Shot Day-Night Domain Adaptation [52.923298434948606]
低照度条件は人間の視覚経験を妨げるだけでなく、下流の視覚タスクにおけるモデルの性能を低下させる。
この論文は、境界適用性、すなわちゼロショットの昼夜ドメイン適応に関するより複雑なシナリオに挑戦する。
我々は、それらを統一された枠組みで考える類似性 min-max パラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-17T18:50:15Z) - Introspective Deep Metric Learning for Image Retrieval [80.29866561553483]
良好な類似性モデルは、より堅牢なトレーニングのために曖昧なイメージをよりよく扱うように注意しながら、意味的な相違を考慮すべきである、と我々は主張する。
本稿では,画像の意味的特徴とあいまいさを記述した,意味的埋め込みだけでなく,付随する不確実性埋め込みを用いて画像を表現することを提案する。
提案したIDMLフレームワークは,不確実性モデリングによるディープメトリック学習の性能向上を実現し,広く使用されているCUB-200-2011,Cars196,Stanford Online Productsデータセットの最先端結果を得る。
論文 参考訳(メタデータ) (2022-05-09T17:51:44Z) - Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation
in Nighttime Semantic Segmentation [17.874336775904272]
CCDistillと呼ばれるクロスドメイン相関蒸留による新しいドメイン適応フレームワークを提案する。
特徴に含まれる内容やスタイルの知識を抽出し、2つの画像間の固有または照度差の度合いを算出する。
Dark Zurich と ACDC の実験では,CCDistill が夜間セマンティックセマンティックセグメンテーションの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-05-02T12:42:04Z) - Self-supervised Monocular Depth Estimation for All Day Images using
Domain Separation [17.066753214406525]
本稿では,全日画像の自己教師付き深度推定のための領域分離ネットワークを提案する。
提案手法は,オックスフォード・ロボットカー・データセットにおける全日画像の最先端の深度推定結果を実現する。
論文 参考訳(メタデータ) (2021-08-17T13:52:19Z) - DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime
Semantic Segmentation [18.43890050736093]
夜間セマンティックセグメンテーションのための新しいドメイン適応ネットワーク(DANNet)を提案する。
ラベル付きデイタイムデータセットとラベルなしデータセットを備えた敵対的なトレーニングを採用している。
本手法は,夜間セマンティックセグメンテーションにおける最新性能を実現する。
論文 参考訳(メタデータ) (2021-04-22T02:49:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。