Assessing the validity of saliency maps for abnormality localization in
medical imaging
- URL: http://arxiv.org/abs/2006.00063v1
- Date: Fri, 29 May 2020 20:17:26 GMT
- Title: Assessing the validity of saliency maps for abnormality localization in
medical imaging
- Authors: Nishanth Thumbavanam Arun, Nathan Gaw, Praveer Singh, Ken Chang,
Katharina Viktoria Hoebel, Jay Patel, Mishka Gidwani, Jayashree
Kalpathy-Cramer
- Abstract summary: Saliency maps have become a widely used method to assess which areas of the input image are most pertinent to the prediction of a trained neural network.
In this work, we explored the credibility of the various existing saliency map methods on the RSNA Pneumonia dataset.
- Score: 6.299152745637685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Saliency maps have become a widely used method to assess which areas of the
input image are most pertinent to the prediction of a trained neural network.
However, in the context of medical imaging, there is no study to our knowledge
that has examined the efficacy of these techniques and quantified them using
overlap with ground truth bounding boxes. In this work, we explored the
credibility of the various existing saliency map methods on the RSNA Pneumonia
dataset. We found that GradCAM was the most sensitive to model parameter and
label randomization, and was highly agnostic to model architecture.
Related papers
- A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis [48.84443450990355]
Deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexcepted situations.
We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images.
Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language.
arXiv Detail & Related papers (2024-05-23T17:55:02Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Towards the Localisation of Lesions in Diabetic Retinopathy [2.3204178451683264]
This study uses pre-trained weights from four state-of-the-art deep learning models to produce and compare localisation maps of diabetic retinopathy (DR) fundus images.
InceptionV3 achieves the best performance with a test classification accuracy of 96.07%, and localise lesions better and faster than the other models.
arXiv Detail & Related papers (2020-12-21T15:39:17Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Explainable Disease Classification via weakly-supervised segmentation [4.154485485415009]
Deep learning approaches to Computer Aided Diagnosis (CAD) typically pose the problem as an image classification (Normal or Abnormal) problem.
This paper examines this problem and proposes an approach which mimics the clinical practice of looking for evidence prior to diagnosis.
The proposed solution is then adapted to Breast Cancer detection from mammographic images.
arXiv Detail & Related papers (2020-08-24T09:00:30Z) - Assessing the (Un)Trustworthiness of Saliency Maps for Localizing
Abnormalities in Medical Imaging [7.359736138662335]
Saliency maps have become a widely used method to make deep learning models more interpretable.
They are increasingly being used in medical imaging to provide clinically plausible explanations.
We show that all eight saliency map techniques fail at least one of the criteria and are, in most cases, less trustworthy when compared to the baselines.
arXiv Detail & Related papers (2020-08-06T17:11:19Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - Interpreting Medical Image Classifiers by Optimization Based
Counterfactual Impact Analysis [2.512212190779389]
We present a model saliency mapping framework tailored to medical imaging.
We replace techniques with a strong neighborhood conditioned inpainting approach, which avoids implausible artefacts.
arXiv Detail & Related papers (2020-04-03T14:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.