論文の概要: Understanding the Message Passing in Graph Neural Networks via Power
Iteration Clustering
- arxiv url: http://arxiv.org/abs/2006.00144v3
- Date: Mon, 11 Jan 2021 06:13:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 17:32:19.812377
- Title: Understanding the Message Passing in Graph Neural Networks via Power
Iteration Clustering
- Title(参考訳): パワーイテレーションクラスタリングによるグラフニューラルネットワークにおけるメッセージパッシングの理解
- Authors: Xue Li and Yuanzhi Cheng
- Abstract要約: グラフニューラルネットワーク(GNN)におけるメッセージパッシングのメカニズムについて検討する。
本稿では,1つのアグリゲータのみを用いて反復的に学習するサブスペース・パワー・イテレーション・クラスタリング(SPIC)モデルを提案する。
我々の発見は、ニューラルネットワークの理論的理解の境界を押し広げた。
- 参考スコア(独自算出の注目度): 4.426835206454162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The mechanism of message passing in graph neural networks (GNNs) is still
mysterious. Apart from convolutional neural networks, no theoretical origin for
GNNs has been proposed. To our surprise, message passing can be best understood
in terms of power iteration. By fully or partly removing activation functions
and layer weights of GNNs, we propose subspace power iteration clustering
(SPIC) models that iteratively learn with only one aggregator. Experiments show
that our models extend GNNs and enhance their capability to process random
featured networks. Moreover, we demonstrate the redundancy of some
state-of-the-art GNNs in design and define a lower limit for model evaluation
by a random aggregator of message passing. Our findings push the boundaries of
the theoretical understanding of neural networks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)におけるメッセージパッシングのメカニズムはまだ謎である。
畳み込みニューラルネットワーク以外にも、GNNの理論的起源は提案されていない。
驚いたことに、メッセージパッシングは、パワーイテレーションの観点から最もよく理解できます。
GNNの活性化関数と層重みを完全にあるいは部分的に取り除くことにより、一つのアグリゲータで反復的に学習するサブスペースパワー・イテレーション・クラスタリング(SPIC)モデルを提案する。
実験により、我々のモデルはGNNを拡張し、ランダムな特徴ネットワークを処理する能力を高めた。
さらに、設計における最先端のGNNの冗長性を実証し、メッセージパッシングのランダムアグリゲータによるモデル評価の低限界を定義する。
我々の発見は、ニューラルネットワークの理論的理解の境界を押し広げた。
関連論文リスト
- Bundle Neural Networks for message diffusion on graphs [10.018379001231356]
結合ニューラルネットワーク(BuNN)は,任意のグラフ上の任意の特徴変換をインジェクティブな位置符号化で近似できることを示す。
また、BuNNが任意のグラフの族上の任意の特徴変換を近似して、任意の射影的位置エンコーディングを行えば、普遍的なノードレベルの表現性が得られることを証明した。
論文 参考訳(メタデータ) (2024-05-24T13:28:48Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
連続グラフニューラルネットワーク(CGNN)は、既存の離散グラフニューラルネットワーク(GNN)を一般化する能力によって注目されている。
本稿では,2階ODEを用いたCOS-GNNの高次構造について紹介する。
我々は、COS-GNNが爆発や消滅の問題を効果的に軽減し、ノード間の長距離依存関係を捕捉できるという理論的証明を提供する。
論文 参考訳(メタデータ) (2024-04-02T12:36:40Z) - Deep Graph Neural Networks via Flexible Subgraph Aggregation [50.034313206471694]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習し、近隣情報を集約することでノードの表現を学ぶ。
本稿では,サブグラフアグリゲーションの観点から,GNNの表現力を評価する。
サブグラフアグリゲーションの異なるホップをより柔軟に活用できるサンプリングベースノードレベル残余モジュール(SNR)を提案する。
論文 参考訳(メタデータ) (2023-05-09T12:03:42Z) - Understanding and Improving Deep Graph Neural Networks: A Probabilistic
Graphical Model Perspective [22.82625446308785]
グラフニューラルネットワーク(GNN)の理解のための新しい視点を提案する。
本研究では,深いGNNに着目し,その理解のための新しい視点を提案する。
我々はより強力なGNN:結合グラフニューラルネットワーク(CoGNet)を設計する。
論文 参考訳(メタデータ) (2023-01-25T12:02:12Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
グラフニューラルネットワークは、ディープラーニングの成功の継続として出現している。
ヘテロジニアスアグリゲーションを組み合わせることで,GNN層間の情報伝達を促進することを提案する。
我々は,多くのグラフ分類ベンチマークにおいて,HAG-Netの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2021-02-08T08:57:56Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
破滅的な忘れは、ニューラルネットワークが新しいタスクを学ぶ前に学んだ知識を「忘れる」傾向を指します。
本稿では,この問題を克服し,グラフニューラルネットワーク(GNN)における継続学習を強化するための新しいスキームを提案する。
私たちのアプローチの中心には、トポロジ認識重量保存(TWP)と呼ばれる汎用モジュールがあります。
論文 参考訳(メタデータ) (2020-12-10T22:30:25Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。