論文の概要: Graph Neural Networks for Motion Planning
- arxiv url: http://arxiv.org/abs/2006.06248v2
- Date: Mon, 14 Dec 2020 17:07:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 12:55:25.880022
- Title: Graph Neural Networks for Motion Planning
- Title(参考訳): 動き計画のためのグラフニューラルネットワーク
- Authors: Arbaaz Khan, Alejandro Ribeiro, Vijay Kumar, Anthony G. Francis
- Abstract要約: 低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
- 参考スコア(独自算出の注目度): 108.51253840181677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the feasibility of using Graph Neural Networks (GNNs)
for classical motion planning problems. We propose guiding both continuous and
discrete planning algorithms using GNNs' ability to robustly encode the
topology of the planning space using a property called permutation invariance.
We present two techniques, GNNs over dense fixed graphs for low-dimensional
problems and sampling-based GNNs for high-dimensional problems. We examine the
ability of a GNN to tackle planning problems such as identifying critical nodes
or learning the sampling distribution in Rapidly-exploring Random Trees (RRT).
Experiments with critical sampling, a pendulum and a six DoF robot arm show
GNNs improve on traditional analytic methods as well as learning approaches
using fully-connected or convolutional neural networks.
- Abstract(参考訳): 本稿では,従来の動作計画問題に対するグラフニューラルネットワーク(GNN)の適用可能性について検討する。
本稿では,GNN による計画空間のトポロジを,置換不変性(permutation invariance) と呼ばれる特性を用いて強固にエンコードする,連続計画アルゴリズムと離散計画アルゴリズムの両方を導くことを提案する。
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
本稿では,重要なノードの特定や,RRT(Rapidly-Exploring Random Trees)におけるサンプリング分布の学習など,GNNが計画上の問題に取り組む能力について検討する。
臨界サンプリング、振り子、および6つのdofロボットアームを用いた実験では、gnnは、完全接続または畳み込みニューラルネットワークを用いた学習アプローチだけでなく、従来の分析手法を改善している。
関連論文リスト
- Unleash Graph Neural Networks from Heavy Tuning [33.948899558876604]
グラフニューラルネットワーク(GNN)は、グラフ型データ用に設計されたディープラーニングアーキテクチャである。
本稿では,光チューニングされた粗い探索中に保存されたチェックポイントから学習することで,高性能なGNNを直接生成するグラフ条件付き潜時拡散フレームワーク(GNN-Diff)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:23:47Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - Two-level Graph Neural Network [15.014364222532347]
2レベルGNN(TL-GNN)と呼ばれる新しいGNNフレームワークを提案する。
これは、サブグラフレベル情報とノードレベル情報とをマージする。
実験により、TL-GNNは既存のGNNよりも優れ、最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2022-01-03T02:15:20Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
破滅的な忘れは、ニューラルネットワークが新しいタスクを学ぶ前に学んだ知識を「忘れる」傾向を指します。
本稿では,この問題を克服し,グラフニューラルネットワーク(GNN)における継続学習を強化するための新しいスキームを提案する。
私たちのアプローチの中心には、トポロジ認識重量保存(TWP)と呼ばれる汎用モジュールがあります。
論文 参考訳(メタデータ) (2020-12-10T22:30:25Z) - Learning Graph Neural Networks with Approximate Gradient Descent [24.49427608361397]
ラベルがノードまたはグラフに添付されているかどうかに応じて、2種類のグラフニューラルネットワーク(GNN)が調査されます。
gnnトレーニングアルゴリズムの設計と解析のための包括的なフレームワークを開発した。
提案アルゴリズムは,GNNの根底にある真のパラメータに対する線形収束率を保証する。
論文 参考訳(メタデータ) (2020-12-07T02:54:48Z) - GNNLens: A Visual Analytics Approach for Prediction Error Diagnosis of
Graph Neural Networks [42.222552078920216]
Graph Neural Networks(GNN)は、ディープラーニング技術をグラフデータに拡張することを目的としている。
GNNは、モデル開発者やユーザから詳細を隠したブラックボックスのように振る舞う。
したがって、GNNの潜在的なエラーを診断することは困難である。
本稿では,対話型視覚分析ツールGNNLensで研究ギャップを埋め,モデル開発者やユーザによるGNNの理解と分析を支援する。
論文 参考訳(メタデータ) (2020-11-22T16:09:08Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。