User Memory Reasoning for Conversational Recommendation
- URL: http://arxiv.org/abs/2006.00184v1
- Date: Sat, 30 May 2020 05:29:23 GMT
- Title: User Memory Reasoning for Conversational Recommendation
- Authors: Hu Xu, Seungwhan Moon, Honglei Liu, Bing Liu, Pararth Shah, Bing Liu,
Philip S. Yu
- Abstract summary: We study a conversational recommendation model which dynamically manages users' past (offline) preferences and current (online) requests.
MGConvRex captures human-level reasoning over user memory and has disjoint training/testing sets of users for zero-shot (cold-start) reasoning for recommendation.
- Score: 68.34475157544246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a conversational recommendation model which dynamically manages
users' past (offline) preferences and current (online) requests through a
structured and cumulative user memory knowledge graph, to allow for natural
interactions and accurate recommendations. For this study, we create a new
Memory Graph (MG) <--> Conversational Recommendation parallel corpus called
MGConvRex with 7K+ human-to-human role-playing dialogs, grounded on a
large-scale user memory bootstrapped from real-world user scenarios. MGConvRex
captures human-level reasoning over user memory and has disjoint
training/testing sets of users for zero-shot (cold-start) reasoning for
recommendation. We propose a simple yet expandable formulation for constructing
and updating the MG, and a reasoning model that predicts optimal dialog
policies and recommendation items in unconstrained graph space. The prediction
of our proposed model inherits the graph structure, providing a natural way to
explain the model's recommendation. Experiments are conducted for both offline
metrics and online simulation, showing competitive results.
Related papers
- Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
We propose a knowledge graph based conversational recommender system (referred as KG-CRS)
Specifically, we first integrate the user-item graph and item-attribute graph into a dynamic graph, dynamically changing during the dialogue process by removing negative items or attributes.
We then learn informative embedding of users, items, and attributes by also considering propagation through neighbors on the graph.
arXiv Detail & Related papers (2024-08-02T15:38:55Z) - Aligning Explanations for Recommendation with Rating and Feature via Maximizing Mutual Information [29.331050754362803]
Current explanation generation methods are commonly trained with an objective to mimic existing user reviews.
We propose a flexible model-agnostic method named MMI framework to enhance the alignment between the generated natural language explanations and the predicted rating/important item features.
Our MMI framework can boost different backbone models, enabling them to outperform existing baselines in terms of alignment with predicted ratings and item features.
arXiv Detail & Related papers (2024-07-18T08:29:55Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Rec is a user simulator in recommendation based on Large Language Models.
Each agent interacts with personalized recommender models in a page-by-page manner.
arXiv Detail & Related papers (2023-10-16T06:41:16Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
Top-N recommendation, which aims to learn user ranking-based preference, has long been a fundamental problem in a wide range of applications.
In this paper, we propose to reformulate the recommendation task within the causal inference framework to handle the data scarce problem.
arXiv Detail & Related papers (2021-09-02T14:28:46Z) - Dialogue Response Ranking Training with Large-Scale Human Feedback Data [52.12342165926226]
We leverage social media feedback data to build a large-scale training dataset for feedback prediction.
We trained DialogRPT, a set of GPT-2 based models on 133M pairs of human feedback data.
Our ranker outperforms the conventional dialog perplexity baseline with a large margin on predicting Reddit feedback.
arXiv Detail & Related papers (2020-09-15T10:50:05Z) - UBER-GNN: A User-Based Embeddings Recommendation based on Graph Neural
Networks [27.485553372163732]
We propose User-Based Embeddings Recommendation with Graph Neural Network, UBER-GNN for brevity.
UBER-GNN takes advantage of structured data to generate longterm user preferences, and transfers session sequences into graphs to generate graph-based dynamic interests.
Experiments conducted on real Ping An scenario show that UBER-GNN outperforms the state-of-the-art session-based recommendation methods.
arXiv Detail & Related papers (2020-08-06T09:54:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.