Aligning Explanations for Recommendation with Rating and Feature via Maximizing Mutual Information
- URL: http://arxiv.org/abs/2407.13274v2
- Date: Tue, 20 Aug 2024 23:28:47 GMT
- Title: Aligning Explanations for Recommendation with Rating and Feature via Maximizing Mutual Information
- Authors: Yurou Zhao, Yiding Sun, Ruidong Han, Fei Jiang, Lu Guan, Xiang Li, Wei Lin, Weizhi Ma, Jiaxin Mao,
- Abstract summary: Current explanation generation methods are commonly trained with an objective to mimic existing user reviews.
We propose a flexible model-agnostic method named MMI framework to enhance the alignment between the generated natural language explanations and the predicted rating/important item features.
Our MMI framework can boost different backbone models, enabling them to outperform existing baselines in terms of alignment with predicted ratings and item features.
- Score: 29.331050754362803
- License:
- Abstract: Providing natural language-based explanations to justify recommendations helps to improve users' satisfaction and gain users' trust. However, as current explanation generation methods are commonly trained with an objective to mimic existing user reviews, the generated explanations are often not aligned with the predicted ratings or some important features of the recommended items, and thus, are suboptimal in helping users make informed decision on the recommendation platform. To tackle this problem, we propose a flexible model-agnostic method named MMI (Maximizing Mutual Information) framework to enhance the alignment between the generated natural language explanations and the predicted rating/important item features. Specifically, we propose to use mutual information (MI) as a measure for the alignment and train a neural MI estimator. Then, we treat a well-trained explanation generation model as the backbone model and further fine-tune it through reinforcement learning with guidance from the MI estimator, which rewards a generated explanation that is more aligned with the predicted rating or a pre-defined feature of the recommended item. Experiments on three datasets demonstrate that our MMI framework can boost different backbone models, enabling them to outperform existing baselines in terms of alignment with predicted ratings and item features. Additionally, user studies verify that MI-enhanced explanations indeed facilitate users' decisions and are favorable compared with other baselines due to their better alignment properties.
Related papers
- XRec: Large Language Models for Explainable Recommendation [5.615321475217167]
We introduce a model-agnostic framework called XRec, which enables Large Language Models to provide explanations for user behaviors in recommender systems.
Our experiments demonstrate XRec's ability to generate comprehensive and meaningful explanations that outperform baseline approaches in explainable recommender systems.
arXiv Detail & Related papers (2024-06-04T14:55:14Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Uncertainty-Aware Explainable Recommendation with Large Language Models [15.229417987212631]
We develop a model that utilizes the ID vectors of user and item inputs as prompts for GPT-2.
We employ a joint training mechanism within a multi-task learning framework to optimize both the recommendation task and explanation task.
Our method achieves 1.59 DIV, 0.57 USR and 0.41 FCR on the Yelp, TripAdvisor and Amazon dataset respectively.
arXiv Detail & Related papers (2024-01-31T14:06:26Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
Large language models (LLMs) have demonstrated remarkable intelligence in understanding, reasoning, and instruction following.
This paper presents the initial exploration of using LLMs as surrogate models to explain black-box recommender models.
To facilitate an effective alignment, we introduce three methods: behavior alignment, intention alignment, and hybrid alignment.
arXiv Detail & Related papers (2023-11-18T03:05:43Z) - Explainable Recommender with Geometric Information Bottleneck [25.703872435370585]
We propose to incorporate a geometric prior learnt from user-item interactions into a variational network.
Latent factors from an individual user-item pair can be used for both recommendation and explanation generation.
Experimental results on three e-commerce datasets show that our model significantly improves the interpretability of a variational recommender.
arXiv Detail & Related papers (2023-05-09T10:38:36Z) - Graph-based Extractive Explainer for Recommendations [38.278148661173525]
We develop a graph attentive neural network model that seamlessly integrates user, item, attributes, and sentences for extraction-based explanation.
To balance individual sentence relevance, overall attribute coverage, and content redundancy, we solve an integer linear programming problem to make the final selection of sentences.
arXiv Detail & Related papers (2022-02-20T04:56:10Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
Top-N recommendation, which aims to learn user ranking-based preference, has long been a fundamental problem in a wide range of applications.
In this paper, we propose to reformulate the recommendation task within the causal inference framework to handle the data scarce problem.
arXiv Detail & Related papers (2021-09-02T14:28:46Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - User Memory Reasoning for Conversational Recommendation [68.34475157544246]
We study a conversational recommendation model which dynamically manages users' past (offline) preferences and current (online) requests.
MGConvRex captures human-level reasoning over user memory and has disjoint training/testing sets of users for zero-shot (cold-start) reasoning for recommendation.
arXiv Detail & Related papers (2020-05-30T05:29:23Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.