論文の概要: Advanced Single Image Resolution Upsurging Using a Generative
Adversarial Network
- arxiv url: http://arxiv.org/abs/2006.00186v1
- Date: Sat, 30 May 2020 05:40:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 18:08:16.632162
- Title: Advanced Single Image Resolution Upsurging Using a Generative
Adversarial Network
- Title(参考訳): ジェネレーティブ・ディバイサル・ネットワークを用いた高度な単一画像解像度向上
- Authors: Md. Moshiur Rahman, Samrat Kumar Dey, and Kabid Hassan Shibly
- Abstract要約: ファジィ品質のため、解像度の低い画像が適さないため、画像の高解像度が常に好ましい。
ディープネットワークを用いたResidual In Residual Dense Blockネットワークアーキテクチャを用いて,高解像度画像を生成する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The resolution of an image is a very important criterion for evaluating the
quality of the image. A higher resolution of an image is always preferable as
images of lower resolution are unsuitable due to fuzzy quality. A higher
resolution of an image is important for various fields such as medical imaging;
astronomy works and so on as images of lower resolution becomes unclear and
indistinct when their sizes are enlarged. In recent times, various research
works are performed to generate a higher resolution of an image from its lower
resolution. In this paper, we have proposed a technique of generating higher
resolution images form lower resolution using Residual in Residual Dense Block
network architecture with a deep network. We have also compared our method with
other methods to prove that our method provides better visual quality images.
- Abstract(参考訳): 画像の解像度は、画像の品質を評価するための非常に重要な基準である。
ファジィ品質のため、解像度の低い画像が適さないため、画像の高解像度が常に好ましい。
画像の高解像度化は、医用画像などの様々な分野において重要である。
近年,低解像度画像から高解像度画像を生成するための様々な研究が行われている。
本稿では,ディープネットワークを用いた残差密度ブロックネットワークアーキテクチャの残差を用いて,高分解能画像を生成する手法を提案する。
また,提案手法を他の手法と比較し,視覚的品質の高い画像を提供することを示す。
関連論文リスト
- How Real is Real: Evaluating the Robustness of Real-World Super
Resolution [0.0]
超解像は、高分解能画像上で行うダウンサンプリング法に頼って、既知の低分解能画像を形成するため、よく知られた問題である。
我々は,複数の最先端超解像法を評価し,様々な種類の実像を提示する際の性能評価を行う。
我々は、ほとんどの最先端超解法モデルにおいて差し迫った一般化問題を緩和する潜在的な解決策を提示する。
論文 参考訳(メタデータ) (2022-10-22T18:53:45Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
低解像度(LR)クエリIDイメージと高解像度(HR)ギャラリーイメージとの整合性を実現する。
実際のカメラとの違いにより、クエリ画像が分解能の低下に悩まされることがしばしばあるため、これは困難かつ実用的な問題である。
本稿では,問合せ画像の解像度に適応する動的計量を用いて,HRとLRの画像を直接比較するためのSRフリーなパラダイムについて検討する。
論文 参考訳(メタデータ) (2022-07-09T03:49:51Z) - Multi-Modality Image Super-Resolution using Generative Adversarial
Networks [0.0]
画像超解像と多モード画像-画像変換の連立問題に対する解法を提案する。
この問題は、他のモードで同じ画像を低解像度で観察した場合に、高解像度の画像をモダリティで復元するものとして説明できる。
論文 参考訳(メタデータ) (2022-06-18T12:19:31Z) - Resolution based Feature Distillation for Cross Resolution Person
Re-Identification [17.86505685442293]
人物の再識別(re-id)は、異なるカメラビューで同一人物の画像を取得することを目的としている。
解像度のミスマッチは、興味のある人とカメラの間の距離が異なるため起こる。
本稿では,複数の解像度の問題を克服するために,分解能に基づく特徴蒸留(RFD)アプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T11:07:59Z) - A Generative Model for Hallucinating Diverse Versions of Super
Resolution Images [0.3222802562733786]
我々は、生成逆数モデルを用いて、同じ低解像度画像から異なる高解像度バージョンを得るという問題に取り組んでいる。
学習アプローチでは,高分解能画像の学習において,教師なしの保存と探索に高周波数を活用できる。
論文 参考訳(メタデータ) (2021-02-12T17:11:42Z) - Image Matching with Scale Adjustment [57.18604132027697]
可変スケールでの関心点の表現と抽出方法を示す。
2つの異なる解像度で2つの画像を比較する方法を提案する。
論文 参考訳(メタデータ) (2020-12-10T11:03:25Z) - Deep Photo Cropper and Enhancer [65.11910918427296]
画像に埋め込まれた画像を収穫する新しいタイプの画像強調問題を提案する。
提案手法をディープ・フォト・クリーパーとディープ・イメージ・エンハンサーの2つのディープ・ネットワークに分割した。
フォトクロッパーネットワークでは,埋め込み画像の抽出に空間変換器を用いる。
フォトエンハンサーでは、埋め込み画像中の画素数を増やすために超解像を用いる。
論文 参考訳(メタデータ) (2020-08-03T03:50:20Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Unsupervised Real Image Super-Resolution via Generative Variational
AutoEncoder [47.53609520395504]
古典的な例に基づく画像超解法を再考し、知覚的画像超解法のための新しい生成モデルを考案する。
本稿では,変分オートエンコーダを用いた共同画像デノベーションと超解像モデルを提案する。
判別器の助けを借りて、超分解能サブネットワークのオーバーヘッドを加味して、分解された画像をフォトリアリスティックな視覚的品質で超解凍する。
論文 参考訳(メタデータ) (2020-04-27T13:49:36Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
本稿では,基本特徴と回復特徴を別々に抽出する二分岐畳み込みニューラルネットワークを提案する。
特徴抽出ステップを2つのタスク非依存ストリームに分解することで、デュアルブランチモデルがトレーニングプロセスを容易にすることができる。
論文 参考訳(メタデータ) (2020-03-02T13:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。