論文の概要: Statistical Guarantees for Regularized Neural Networks
- arxiv url: http://arxiv.org/abs/2006.00294v2
- Date: Wed, 11 Nov 2020 09:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 17:33:39.465444
- Title: Statistical Guarantees for Regularized Neural Networks
- Title(参考訳): 正規化ニューラルネットワークの統計的保証
- Authors: Mahsa Taheri and Fang Xie and Johannes Lederer
- Abstract要約: 最小二乗項と正則化器からなる推定器の一般統計保証を開発する。
ニューラルネットワークの正規化推定のための数学的基礎を確立した。
- 参考スコア(独自算出の注目度): 4.254099382808598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have become standard tools in the analysis of data, but they
lack comprehensive mathematical theories. For example, there are very few
statistical guarantees for learning neural networks from data, especially for
classes of estimators that are used in practice or at least similar to such. In
this paper, we develop a general statistical guarantee for estimators that
consist of a least-squares term and a regularizer. We then exemplify this
guarantee with $\ell_1$-regularization, showing that the corresponding
prediction error increases at most sub-linearly in the number of layers and at
most logarithmically in the total number of parameters. Our results establish a
mathematical basis for regularized estimation of neural networks, and they
deepen our mathematical understanding of neural networks and deep learning more
generally.
- Abstract(参考訳): ニューラルネットワークはデータ解析の標準ツールとなっているが、包括的な数学的理論は欠如している。
例えば、データからニューラルネットワークを学習するための統計的保証は、特に実際に使用されるか、あるいはそれと少なくとも類似した推定器のクラスに対して、ごくわずかである。
本稿では,最小二乗項と正則化器からなる推定器の一般統計保証を開発する。
次に、この保証を$\ell_1$-regularizationで例示し、対応する予測誤差が、層数において最も線形に、そしてパラメータの総数において対数的に増加することを示す。
その結果,ニューラルネットワークの正規化推定の数学的基礎を確立し,ニューラルネットワークとディープラーニングの数学的理解を深めることができた。
関連論文リスト
- Trade-Offs of Diagonal Fisher Information Matrix Estimators [53.35448232352667]
Fisher情報行列は、ニューラルネットワークのパラメータ空間の局所幾何学を特徴付けるのに使うことができる。
精度とサンプルの複雑さが関連する分散に依存する2つの人気推定器について検討する。
分散のバウンダリを導出し、回帰と分類のためにニューラルネットワークでそれらをインスタンス化する。
論文 参考訳(メタデータ) (2024-02-08T03:29:10Z) - Fundamental limits of overparametrized shallow neural networks for
supervised learning [11.136777922498355]
本研究では,教師ネットワークが生成した入力-出力ペアから学習した2層ニューラルネットワークについて検討する。
この結果は,トレーニングデータとネットワーク重み間の相互情報,すなわちベイズ最適一般化誤差に関連する境界の形で得られる。
論文 参考訳(メタデータ) (2023-07-11T08:30:50Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Statistical Guarantees for Approximate Stationary Points of Simple
Neural Networks [4.254099382808598]
我々は、対数的要因と大域的最適値に一致する単純なニューラルネットワークの統計的保証を開発する。
我々は,ニューラルネットワークの実用的性質を数学的に記述する上で一歩前進する。
論文 参考訳(メタデータ) (2022-05-09T18:09:04Z) - How does unlabeled data improve generalization in self-training? A
one-hidden-layer theoretical analysis [93.37576644429578]
この研究は、既知の反復的自己学習パラダイムに関する最初の理論的分析を確立する。
トレーニング収束と一般化能力の両面で、ラベルなしデータの利点を実証する。
また、浅部ニューラルネットワークから深部ニューラルネットワークへの実験は、我々の確立した自己学習に関する理論的知見の正しさを正当化するものである。
論文 参考訳(メタデータ) (2022-01-21T02:16:52Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
目的関数の幾何学的構造を解析することにより、刈り取られたニューラルネットワークを訓練する性能を解析する。
本稿では,ニューラルネットワークモデルがプルーニングされるにつれて,一般化が保証された望ましいモデル近傍の凸領域が大きくなることを示す。
論文 参考訳(メタデータ) (2021-10-12T01:11:07Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Compressive Sensing and Neural Networks from a Statistical Learning
Perspective [4.561032960211816]
線形測定の少ないスパース再構成に適したニューラルネットワークのクラスに対する一般化誤差解析を提案する。
現実的な条件下では、一般化誤差は層数で対数的にしかスケールせず、測定数ではほとんど線形である。
論文 参考訳(メタデータ) (2020-10-29T15:05:43Z) - Theoretical Analysis of Self-Training with Deep Networks on Unlabeled
Data [48.4779912667317]
自己学習アルゴリズムは、ニューラルネットワークを使ってラベルのないデータで学ぶことに成功している。
この研究は、半教師なし学習、教師なしドメイン適応、教師なし学習のための深層ネットワークによる自己学習の統一的理論的解析を提供する。
論文 参考訳(メタデータ) (2020-10-07T19:43:55Z) - Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
Regression and Infinitely Wide Neural Networks [17.188280334580195]
トレーニングデータセットを越えた一般化は、マシンラーニングの主な目標である。
最近のディープニューラルネットワークの観測は、古典統計学の従来の知恵と矛盾している。
より多くのデータが、カーネルがノイズや表現できないときに一般化を損なう可能性があることを示す。
論文 参考訳(メタデータ) (2020-06-23T17:53:11Z) - Bayesian Neural Networks [0.0]
ニューラルネットワークによる予測におけるエラーを原理的に得る方法を示し、これらのエラーを特徴付ける2つの方法を提案する。
さらに、これらの2つのメソッドが実際に実施される際に、重大な落とし穴を持つ方法についても説明します。
論文 参考訳(メタデータ) (2020-06-02T09:43:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。