論文の概要: Rethinking Assumptions in Deep Anomaly Detection
- arxiv url: http://arxiv.org/abs/2006.00339v2
- Date: Sat, 10 Jul 2021 10:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 17:42:47.513162
- Title: Rethinking Assumptions in Deep Anomaly Detection
- Title(参考訳): 深部異常検出における再考
- Authors: Lukas Ruff, Robert A. Vandermeulen, Billy Joe Franks, Klaus-Robert
M\"uller, and Marius Kloft
- Abstract要約: 以上の結果から,この直感は画像上での深部ADに及ばないことが明らかとなった。
ImageNetの最近のADベンチマークでは、通常のサンプルと数個の(64)ランダムな自然画像の区別を訓練された分類器が、ADの最先端技術よりも優れている。
- 参考スコア(独自算出の注目度): 26.942031693233183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though anomaly detection (AD) can be viewed as a classification problem
(nominal vs. anomalous) it is usually treated in an unsupervised manner since
one typically does not have access to, or it is infeasible to utilize, a
dataset that sufficiently characterizes what it means to be "anomalous." In
this paper we present results demonstrating that this intuition surprisingly
seems not to extend to deep AD on images. For a recent AD benchmark on
ImageNet, classifiers trained to discern between normal samples and just a few
(64) random natural images are able to outperform the current state of the art
in deep AD. Experimentally we discover that the multiscale structure of image
data makes example anomalies exceptionally informative.
- Abstract(参考訳): 異常検出(英: anomaly detection, ad)は、分類問題(固有対異常)と見なすことができるが、通常は「異常」の意味を十分に特徴付けるデータセットであるため、教師なしの方法で扱われる。
本稿では,この直感が画像上での深部ADにまで拡張されないことを示す。
ImageNetの最近のADベンチマークでは、通常のサンプルと数個の(64)ランダムな自然画像の区別を訓練された分類器が、ADの最先端技術よりも優れている。
画像データの多スケール構造は,異常を例示的に有益であることを示す。
関連論文リスト
- Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
異常検出(AD)は、正規性の学習モデルに適合しない観察を識別する重要なタスクである。
本稿では, 入力空間における説明不能な観測として, 説明可能性を用いた新しいAD手法を提案する。
当社のアプローチでは,複数のベンチマークにまたがる新たな最先端性を確立し,さまざまな異常な型を扱う。
論文 参考訳(メタデータ) (2023-10-01T21:24:05Z) - That's BAD: Blind Anomaly Detection by Implicit Local Feature Clustering [28.296651124677556]
ブラインド異常検出(BAD)の設定は、局所的な異常検出問題に変換することができる。
画像および画素レベルの異常を正確に検出できるPatchClusterという新しい手法を提案する。
実験結果から、PatchClusterは通常のデータを知ることなく、有望なパフォーマンスを示すことがわかった。
論文 参考訳(メタデータ) (2023-07-06T18:17:43Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero
Outlier Images [26.283734474660484]
専門的なAD学習手法は、実際には多量かつ膨大なデータのコーパスであることを示す。
我々は,この現象を調査し,一級法がトレーニングアウトリージの特定の選択に対してより堅牢であることを明らかにする。
論文 参考訳(メタデータ) (2022-05-23T17:23:15Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z) - Modeling the Distribution of Normal Data in Pre-Trained Deep Features
for Anomaly Detection [2.9864637081333085]
画像中の異常検出(AD)は、標準からかなり逸脱した画像や画像のサブ構造を特定することを指す。
本研究では,大きな自然画像データセット上での識別モデルにより学習された深い特徴表現が,正規性を記述するのに適していることを示す。
論文 参考訳(メタデータ) (2020-05-28T16:43:41Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
クリーンサンプルのみを用いたアンタングル学習に基づく一対一画像異常検出システムを提案する。
3つのデータセットを用いて実験したところ、OIADは90%以上の異常を検出できる一方で、誤報率も低く抑えられることがわかった。
論文 参考訳(メタデータ) (2020-01-18T09:57:37Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。