論文の概要: That's BAD: Blind Anomaly Detection by Implicit Local Feature Clustering
- arxiv url: http://arxiv.org/abs/2307.03243v1
- Date: Thu, 6 Jul 2023 18:17:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 14:18:22.128889
- Title: That's BAD: Blind Anomaly Detection by Implicit Local Feature Clustering
- Title(参考訳): BAD:局所的特徴クラスタリングによるブラインド異常検出
- Authors: Jie Zhang, Masanori Suganuma, Takayuki Okatani
- Abstract要約: ブラインド異常検出(BAD)の設定は、局所的な異常検出問題に変換することができる。
画像および画素レベルの異常を正確に検出できるPatchClusterという新しい手法を提案する。
実験結果から、PatchClusterは通常のデータを知ることなく、有望なパフォーマンスを示すことがわかった。
- 参考スコア(独自算出の注目度): 28.296651124677556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies on visual anomaly detection (AD) of industrial
objects/textures have achieved quite good performance. They consider an
unsupervised setting, specifically the one-class setting, in which we assume
the availability of a set of normal (\textit{i.e.}, anomaly-free) images for
training. In this paper, we consider a more challenging scenario of
unsupervised AD, in which we detect anomalies in a given set of images that
might contain both normal and anomalous samples. The setting does not assume
the availability of known normal data and thus is completely free from human
annotation, which differs from the standard AD considered in recent studies.
For clarity, we call the setting blind anomaly detection (BAD). We show that
BAD can be converted into a local outlier detection problem and propose a novel
method named PatchCluster that can accurately detect image- and pixel-level
anomalies. Experimental results show that PatchCluster shows a promising
performance without the knowledge of normal data, even comparable to the SOTA
methods applied in the one-class setting needing it.
- Abstract(参考訳): 産業用物体・テクスチャの視覚異常検出(AD)に関する最近の研究は、非常に優れた成果を上げている。
彼らは教師なしの設定、特に1つのクラス設定を考慮し、トレーニングのための正規(\textit{i.e}, anomaly-free)イメージセットが利用可能であると仮定する。
本稿では,通常のサンプルと異常サンプルの両方を含む可能性のある画像の集合における異常を検出する,教師なしADのより困難なシナリオについて考察する。
この設定は、既知の正規データの可用性を前提とせず、最近の研究で考慮されている標準ADとは全く異なる人間のアノテーションから完全に解放されている。
明確にするために、seting blind anomaly detection (bad)と呼ぶ。
本稿では,badを局所的異常検出問題に変換できることを示すとともに,画像および画素レベルの異常を正確に検出できるpatchclusterという新しい手法を提案する。
実験結果から、PatchClusterは通常のデータを知ることなく有望な性能を示し、必要な1クラス設定で適用されるSOTAメソッドに匹敵する性能を示した。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - View-Invariant Pixelwise Anomaly Detection in Multi-object Scenes with Adaptive View Synthesis [0.0]
インフラ資産の検査と監視には、定期的に撮影されるシーンの視覚異常を特定する必要がある。
手動で収集した画像や、同じ場面で同じシーンから無人航空機などのロボットで撮影された画像は、通常は完全に一致していない。
現在の非教師なし画素レベルの異常検出法は, 主に産業環境下で開発されている。
提案するScene AD問題に対処するために,OmniADと呼ばれる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-06-26T01:54:10Z) - ATAC-Net: Zoomed view works better for Anomaly Detection [1.024113475677323]
ATAC-Netは、既知の最小限の事前異常から異常を検出する訓練を行うフレームワークである。
我々は、その優位性を、同等の設定で現在の最先端技術と比較する。
論文 参考訳(メタデータ) (2024-06-20T15:18:32Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
本稿では,複数の仮想シーンで構成された教師付きオープンセット・ベンチマークを提案する。
既存のデータセットとは異なり、トレーニング時に画素レベルでアノテートされた異常事象を導入する。
UBnormalは最先端の異常検出フレームワークの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2021-11-16T17:28:46Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
クリーンサンプルのみを用いたアンタングル学習に基づく一対一画像異常検出システムを提案する。
3つのデータセットを用いて実験したところ、OIADは90%以上の異常を検出できる一方で、誤報率も低く抑えられることがわかった。
論文 参考訳(メタデータ) (2020-01-18T09:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。