Mimicking the Thinking Process for Emotion Recognition in Conversation
with Prompts and Paraphrasing
- URL: http://arxiv.org/abs/2306.06601v1
- Date: Sun, 11 Jun 2023 06:36:19 GMT
- Title: Mimicking the Thinking Process for Emotion Recognition in Conversation
with Prompts and Paraphrasing
- Authors: Ting Zhang, Zhuang Chen, Ming Zhong and Tieyun Qian
- Abstract summary: We propose a novel framework which mimics the thinking process when modeling complex factors.
We first comprehend the conversational context with a history-oriented prompt to selectively gather information from predecessors of the target utterance.
We then model the speaker's background with an experience-oriented prompt to retrieve the similar utterances from all conversations.
- Score: 26.043447749659478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion recognition in conversation, which aims to predict the emotion for
all utterances, has attracted considerable research attention in recent years.
It is a challenging task since the recognition of the emotion in one utterance
involves many complex factors, such as the conversational context, the
speaker's background, and the subtle difference between emotion labels. In this
paper, we propose a novel framework which mimics the thinking process when
modeling these factors. Specifically, we first comprehend the conversational
context with a history-oriented prompt to selectively gather information from
predecessors of the target utterance. We then model the speaker's background
with an experience-oriented prompt to retrieve the similar utterances from all
conversations. We finally differentiate the subtle label semantics with a
paraphrasing mechanism to elicit the intrinsic label related knowledge. We
conducted extensive experiments on three benchmarks. The empirical results
demonstrate the superiority of our proposed framework over the state-of-the-art
baselines.
Related papers
- Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
We propose a new task "Emotion Deducing Explanation in Dialogues" (EDEN)
EDEN recognizes emotion and causes in an explicitly thinking way.
It can help Large Language Models (LLMs) achieve better recognition of emotions and causes.
arXiv Detail & Related papers (2024-06-07T08:58:29Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - Multiscale Contextual Learning for Speech Emotion Recognition in
Emergency Call Center Conversations [4.297070083645049]
This paper presents a multi-scale conversational context learning approach for speech emotion recognition.
We investigated this approach on both speech transcriptions and acoustic segments.
According to our tests, the context derived from previous tokens has a more significant influence on accurate prediction than the following tokens.
arXiv Detail & Related papers (2023-08-28T20:31:45Z) - deep learning of segment-level feature representation for speech emotion
recognition in conversations [9.432208348863336]
We propose a conversational speech emotion recognition method to deal with capturing attentive contextual dependency and speaker-sensitive interactions.
First, we use a pretrained VGGish model to extract segment-based audio representation in individual utterances.
Second, an attentive bi-directional recurrent unit (GRU) models contextual-sensitive information and explores intra- and inter-speaker dependencies jointly.
arXiv Detail & Related papers (2023-02-05T16:15:46Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
We propose a novel formulation that measures the relative difference between the speech samples of different emotions.
We then incorporate our formulation into a sequence-to-sequence emotional text-to-speech framework.
At run-time, we control the model to produce the desired emotion mixture by manually defining an emotion attribute vector.
arXiv Detail & Related papers (2022-08-11T15:45:58Z) - Contrast and Generation Make BART a Good Dialogue Emotion Recognizer [38.18867570050835]
Long-range contextual emotional relationships with speaker dependency play a crucial part in dialogue emotion recognition.
We adopt supervised contrastive learning to make different emotions mutually exclusive to identify similar emotions better.
We utilize an auxiliary response generation task to enhance the model's ability of handling context information.
arXiv Detail & Related papers (2021-12-21T13:38:00Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
We argue that two issues must be tackled at the same time: (i) identifying which word is the cause for the other's emotion from his or her utterance and (ii) reflecting those specific words in the response generation.
Taking inspiration from social cognition, we leverage a generative estimator to infer emotion cause words from utterances with no word-level label.
arXiv Detail & Related papers (2021-09-18T04:22:49Z) - DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in
Conversations [0.0]
We propose novel Contextual Reasoning Networks (DialogueCRN) to fully understand the conversational context from a cognitive perspective.
Inspired by the Cognitive Theory of Emotion, we design multi-turn reasoning modules to extract and integrate emotional clues.
The reasoning module iteratively performs an intuitive retrieving process and a conscious reasoning process, which imitates human unique cognitive thinking.
arXiv Detail & Related papers (2021-06-03T16:47:38Z) - Discovering Emotion and Reasoning its Flip in Multi-Party Conversations
using Masked Memory Network and Transformer [16.224961520924115]
We introduce a novel task -- Emotion Flip Reasoning (EFR)
EFR aims to identify past utterances which have triggered one's emotion state to flip at a certain time.
We propose a masked memory network to address the former and a Transformer-based network for the latter task.
arXiv Detail & Related papers (2021-03-23T07:42:09Z) - COSMIC: COmmonSense knowledge for eMotion Identification in
Conversations [95.71018134363976]
We propose COSMIC, a new framework that incorporates different elements of commonsense such as mental states, events, and causal relations.
We show that COSMIC achieves new state-of-the-art results for emotion recognition on four different benchmark conversational datasets.
arXiv Detail & Related papers (2020-10-06T15:09:38Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.