CNRL at SemEval-2020 Task 5: Modelling Causal Reasoning in Language with
Multi-Head Self-Attention Weights based Counterfactual Detection
- URL: http://arxiv.org/abs/2006.00609v1
- Date: Sun, 31 May 2020 21:02:25 GMT
- Title: CNRL at SemEval-2020 Task 5: Modelling Causal Reasoning in Language with
Multi-Head Self-Attention Weights based Counterfactual Detection
- Authors: Rajaswa Patil and Veeky Baths
- Abstract summary: We use pre-trained transformer models to extract contextual embeddings and self-attention weights from the text.
We show the use of convolutional layers to extract task-specific features from these self-attention weights.
- Score: 0.15229257192293202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we describe an approach for modelling causal reasoning in
natural language by detecting counterfactuals in text using multi-head
self-attention weights. We use pre-trained transformer models to extract
contextual embeddings and self-attention weights from the text. We show the use
of convolutional layers to extract task-specific features from these
self-attention weights. Further, we describe a fine-tuning approach with a
common base model for knowledge sharing between the two closely related
sub-tasks for counterfactual detection. We analyze and compare the performance
of various transformer models in our experiments. Finally, we perform a
qualitative analysis with the multi-head self-attention weights to interpret
our models' dynamics.
Related papers
- Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
We evaluate how such a paradigm should be done in imitation learning.
We consider a setting where the pretraining corpus consists of multitask demonstrations.
We argue that inverse dynamics modeling is well-suited to this setting.
arXiv Detail & Related papers (2023-05-26T14:40:46Z) - Comparative layer-wise analysis of self-supervised speech models [29.258085176788097]
We measure acoustic, phonetic, and word-level properties encoded in individual layers, using a lightweight analysis tool based on canonical correlation analysis (CCA)
We find that these properties evolve across layers differently depending on the model, and the variations relate to the choice of pre-training objective.
We discover that CCA trends provide reliable guidance to choose layers of interest for downstream tasks and that single-layer performance often matches or improves upon using all layers, suggesting implications for more efficient use of pre-trained models.
arXiv Detail & Related papers (2022-11-08T00:59:05Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
We develop a topic-informed discrete latent variable model for semantic textual similarity.
Our model learns a shared latent space for sentence-pair representation via vector quantization.
We show that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
arXiv Detail & Related papers (2022-11-07T15:09:58Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
We assess the robustness of interpretations of neural text classifiers based on pretrained Transformer encoders.
Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
arXiv Detail & Related papers (2021-06-08T18:31:02Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - A Discrete Variational Recurrent Topic Model without the
Reparametrization Trick [16.54912614895861]
We show how to learn a neural topic model with discrete random variables.
We show improved perplexity and document understanding across multiple corpora.
arXiv Detail & Related papers (2020-10-22T20:53:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.